Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1335-1342, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621981

RESUMO

This study aims to investigate the regulatory effect of the Spatholobi Caulis extract from ethyl acetate(SEA) on natural killer(NK) cells under physiological conditions and elucidate the underlying mechanism. The C57BL/6 mice were randomized into NC and SEA groups, and NK-92 cells were respectively treated with 0, 25, 50, and 100 µg·mL~(-1) SEA. The body weight and immune organ index of the mice were compared between groups. The lactate dehydrogenase(LDH) assay was employed to examine the cytotoxicity of NK-92 cells treated with SEA and the killing activity of mouse NK cells against YAC-1 cells. The cell-counting kit-8(CCK-8) was used to examine the impact of SEA on the proliferation of NK-92 cells. Flow cytometry was employed to measure the number of NK cells in the peripheral blood as well as the expression levels of natural killer group 2 member A(NKG2A) and natural killer group 2 member D(NKG2D). The enzyme-linked immunosorbent assay(ELISA) was performed to determine the interferon(IFN)-γ secretion in the serum. Semi-quantitative PCR was conducted to determine the mRNA levels of NKG2A, NKG2D, and IFN-γ in spleen cells. Western blot was employed to investigate the involvement of phosphoinositide 3-kinase(PI3K)/extracellular regulated protein kinase 1(ERK1) signaling pathway. The results showed that SEA exhibited no adverse effects on the body, while significantly enhance the number of NK cells and augment the cytotoxicity of NK-92 cells against YAC-1 cells. Moreover, it suppressed the expression of NKG2A, enhanced the expression of NKG2D, promoted IFN-γ secretion, and upregulated the protein levels of PI3K and ERK. The findings suggest that SEA has the potential to enhance the immune recognition and effector function of NK cells by increasing the cell number, modulating the expression of functional receptors, and promoting IFN-γ secretion via the PI3K/ERK signaling pathway.


Assuntos
Acetatos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Células Matadoras Naturais
2.
Phytomedicine ; 128: 155420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547619

RESUMO

BACKGROUND: Within the pro-metastatic hemato-microenvironment, interaction between platelets and tumor cells provides essential support for tumor cells by inducing Epithelial-Mesenchymal Transition (EMT), which greatly increases the stemness of colon cancer cells. Pharmacologically, although platelet deactivation has proved to be benefit against metastasis, its wide application is severely restricted due to the bleeding risk. Spatholobi Caulis, a traditional Chinese herb with circulatory promotion and blood stasis removal activity, has been proved to be clinically effective in malignant medication, leaving its mechanistic relevance to tumor-platelet interaction largely unknown. METHODS: Firstly, MC38-Luc cells were injected into tail-vein in C57BL/6 mice to establish hematogenous metastasis model and the anti-metastasis effects of SEA were evaluated by using a small-animal imaging system. Then, we evaluated the anti-tumor-platelet interaction efficacy of SEA using a tumor-specific induced platelet aggregation model. Platelet aggregation was specifically induced by tumor cells in vitro. Furthermore, to clarify the anti-metastatic effects of SEA is mainly attributed to its blockage on tumor-platelet interaction, after co-culture with tumor cells and platelets (with or without SEA), MC38-Luc cells were injected into the tail-vein and finally count the total of photons quantitatively. Besides, to clarify the blocking pattern of SEA within the tumor-platelet complex, the dependence of SEA on different fractions from activated platelets was tested. Lastly, molecular docking screening were performed to screen potential effective compounds and we used ß-catenin blockers to verify the pathways involved in SEA blocking tumor-platelet interaction. RESULTS: Our study showed that SEA was effective in blocking tumor-platelet specific interaction: (1) Through CCK-8 and LDH assays, SEA showed no cytotoxic effects on tumor cells and platelets. On this basis, by the tail vein injection model, the photon counts in the SEA group was significantly lower than model group, indicating that SEA effectively reduced metastasis. (2) In the "tumor-platelet" co-culture model, SEA effectively inhibited the progression of EMT and cancer stemness signatures of MC38 cells in the model group. (3) In mechanism study, by using the specific inhibitors for galectin-3 (GB1107) andWNT (IWR) respectively, we proved that SEA inhibits the activation of the galectin-3-mediated ß-catenin activation. CONCLUSION: By highlighting the pro-metastatic effects of galectin-3-mediated tumor-platelet adhesion, our study provided indicative evidence for Spatholobi Caulis as the representative candidate for anti-metastatic therapy.


Assuntos
Neoplasias do Colo , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Plaquetas/efeitos dos fármacos , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia , Metástase Neoplásica
3.
J Ethnopharmacol ; 317: 116721, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315648

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlian (SL) extract is consisted of extracts from Salvia miltiorrhiza Bunge and Andrographis paniculata (Burm.f.) Nees, two herbs commonly used in Chinese clinical formula to treat atherosclerosis by removing blood stasis and clearing away heat. Pharmacologically, the anti-atherosclerotic effects of these two herbs are related to unresolved inflammation and the macrophage anergy or apoptosis in lesions led by the lipid flux blockage and ER stress. However, the deeper understanding of SL extract in protecting macrophage in plaques remains unknown. AIM OF THE STUDY: This study aimed to investigate the underlying mechanism of SL extract in protecting ER-stressed macrophages from apoptosis in atherosclerosis. METHODS: The ApoE-/- atherosclerotic mice model and ox-LDL loaded macrophages model were established to assess the effect of SL extract on ER stress in vivo and in vitro. Key markers related to ER stress in plaque were determined by immunohistochemical staining. Proteins involved in apoptosis and ER stress in macrophages loaded by ox-LDL were assessed by Western blot. ER morphology was observed by electron microscope. Lipid flux was temporally and quantitatively depicted by Oil red staining. The LAL and LXRα were blocked by lalistat and Gsk 2033 respectively to investigate whether SL extract protected the function of macrophages by the activation of LAL-LXRα axis. RESULTS: Our study reported that, in ApoE-/- atherosclerotic mice, SL extract effectively relieved ER stress of carotid artery plaque. In lipid-overloaded macrophage models, SL extract significantly alleviated ER stress by promoting cholesterol degradation and efflux, which finally prevented apoptosis of foam cells induced by ox-LDL. Blockage of ER stress by 4-Phenylbutyric acid (4-PBA), an inhibitor of Endoplasmic Reticulum (ER) stress, largely attenuated the protective effects of SL extract on macrophage. By utilizing the selective antagonists against both LAL and LXRα, this study further revealed that the beneficial effects of SL extract in macrophages was dependent on the proper functionalization of LAL-LXRα axis. CONCLUSIONS: By highlighting the therapeutic significance of macrophage protection in resolving atherosclerosis inflammation, our study pharmacologically provided convincing mechanistic evidence of SL extract in the activation LAL-LXRα axis and revealed its promising potential in the promotion of cholesterol turnover and prevention of ER stress induced apoptosis in lipid-loaded macrophages.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Macrófagos , Lipoproteínas LDL/metabolismo , Colesterol/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Placa Aterosclerótica/patologia , Apolipoproteínas E/genética
4.
Zhongguo Zhong Yao Za Zhi ; 48(1): 5-12, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725252

RESUMO

Multiple sclerosis(MS) shows the pathological characteristics of "inflammatory injury of white matter" and "myelin repair disability" in the central nervous system(CNS). It is very essential for MS treatment and reduction of disease burden to strengthen repair, improve function, and reduce disability. Accordingly, different from the simple immunosuppression, we believe that key to strengthening remyelination and maintaining the "damage-repair" homeostasis of tissue is to change the current one-way immunosuppression strategy and achieve the "moderate pro-inflammation-effective inflammation removal" homeostasis. Traditional Chinese medicine shows huge potential in this strategy. Through literature research, this study summarized the research on remyelination, discussed the "mode-rate pro-inflammation-effective inflammation removal" homeostasis and the "damage-repair" homeostasis based on microglia, and summed up the key links in remyelination in MS. This review is expected to lay a theoretical basis for improving the function of MS patients and guide the application of traditional Chinese medicine.


Assuntos
Esclerose Múltipla , Remielinização , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Remielinização/fisiologia , Bainha de Mielina/patologia , Inflamação/tratamento farmacológico , Homeostase
5.
J Ethnopharmacol ; 303: 115944, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410574

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzheng Xiaoai Decoction 1 (FZXAD1) is a clinical experience prescription for the treatment of cancer patients at an advanced stage. FZXAD1 has been used for more than 10 years in the clinic and can effectively improve the deficiency syndrome of cancer patients. However, its mechanisms need further clarification. AIM OF THE STUDY: To check the effects of FZXAD1 in colon 26 (C26) cancer cachexia mice and try to clarify the mechanisms of FZXAD1 in ameliorating cancer cachexia symptoms. MATERIALS AND METHODS: An animal model of cancer cachexia was constructed with male BALB/c mice bearing C26 tumor cells. Food intake, body weight and tumor size were measured daily during the animal experiment. Tissue samples in different groups including tumor and gastrocnemius muscle, were dissected and weighed at the end of the assay. Serum biochemical indicators such as total protein (TP), glucose (GLU) and alkaline phosphatase (ALP) were also detected. Network pharmacology-based analysis predicted the possible targets and signaling pathways involved in the effects of FZXAD1 on cancer cachexia therapy. Western blotting assays of the gastrocnemius muscle tissues from C26 tumor-bearing mice were then used to confirm the predicted possible targets of FZXAD1. RESULTS: The results of animal experiments showed that FZXAD1 could ameliorate cancer cachexia by alleviating the muscle wasting as well as kidney atrophy and increasing the body weight of cancer cachexia mice. AKT1, MTOR, MAPK3, HIF1A and MAPK1 were predicted as the core targets of FZXAD1. Western blotting confirmed the prediction that FZXAD1 increased the expression levels of phosphorylated Akt and mTOR in the muscle tissues. In addition, FZXAD1 treatment obviously ameliorated the increased levels of HIF-1α and phosphorylated Erk1/2 in C26 tumor-bearing mice. CONCLUSION: FZXAD1 effectively ameliorated cancer cachexia in an animal model of mice, which is consistent with its efficacy in the treatment of cancer patients. The mechanisms of FZXAD1 might be mainly based on its alleviating effects on muscle atrophy by activating the Akt-mTOR pathway and thus helping to maintain body weight.


Assuntos
Caquexia , Neoplasias do Colo , Masculino , Animais , Camundongos , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético , Neoplasias do Colo/patologia , Serina-Treonina Quinases TOR/metabolismo , Peso Corporal
7.
Phytomedicine ; 106: 154309, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35994846

RESUMO

BACKGROUND: Inefficient differentiation of oligodendrocyte precursor cells (OPCs) is one of the significant pathological obstacles of myelin repair and provides an essential therapeutic target against behavioral dysfunction in various neurodegenerative diseases, especially in secondary progressive multiple sclerosis (SPMS). Ginsenoside Rg1 (Rg1) has traditionally been recognized as a protector of neuronal damages, preventing its degeneration. PURPOSE: We investigated the effects of Rg1 on myelin regeneration-mediated by OPCs and its therapeutic significance in SPMS. METHODS: A cuprizone (CPZ) model was established and then administered with Rg1 specific for evaluations of functional recovery and remyelination. In vitro, the primary mouse OPCs were isolated and cultured for examining their ability of myelin repair. Furthermore, a chronic experimental autoimmune encephalomyelitis (EAE) model was utilized to assess the therapeutic value on SPMS. RESULTS: We found that Rg1 promoted functional recovery of the demyelinated mice, including spatial memory, motor function, and anxiety-like behavior. Histologically, Rg1 enhanced myelin-genesis as proven by myelin staining and microstructures of myelin observed by transmission electron microscope. Furthermore, Rg1 significantly increased Olig2+ oligodendrocyte lineage cells in callosum, implying that the pro-remyelination effect of Rg1 was closely correlated to the enhanced differentiation of OPCs. We further demonstrated that Rg1 increased the survival and proliferation of OPCs as well as induced maturation in oligodendrocytes (OLs). Molecular analysis showed that Rg1 transduced the pro-differentiation signaling programmed by the GSK3ß/ß-Catenin pathway. Notably, relying on its pro-remyelination effects, Rg1 ameliorated severity and histopathology of EAE disease. CONCLUSION: By paving the way for OPCs differentiation, Rg1 could maintain the integrity of myelin and is a promising candidate for functional recovery in demyelinating diseases.


Assuntos
Encefalomielite Autoimune Experimental , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Diferenciação Celular , Cuprizona/metabolismo , Cuprizona/farmacologia , Cuprizona/uso terapêutico , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ginsenosídeos , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Remielinização/fisiologia , beta Catenina/metabolismo
8.
Phytomedicine ; 106: 154390, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35994849

RESUMO

BACKGROUND: Epigenetics regulating gene expression plays important role in kidney fibrosis. Natural products originating from diverse sources including plants and microorganisms are capable to influence epigenetic modifications. Gambogenic acid (GNA) is a caged xanthone extracted from gamboge resin, exudation of Garcinia hanburyi Hook.f., and the effect of GNA on kidney fibrosis with its underlying mechanism on epigenetics remains unknown. PURPOSE: This study aimed to explore the role of GNA against kidney fibrogenesis by histone methylation mediating gene expression. METHODS: Two experimental mice of unilateral ureteral obstruction (UUO) and folic acid (FA) were given two dosages of GNA (3 and 6 mg/kg/d). TGF-ß1 was used to stimulate mouse tubular epithelial (TCMK-1) cells and siRNAs were transfected to verify the underlying mechanisms of GNA. Histological changes were evaluated by HE, MASSON stainings, immunohistochemistry and immunofluorescence. Western blot and qPCR were used to measure protein/gene transcription levels. RESULTS: GNA dose-dependently alleviated UUO-induced kidney fibrosis and FA-induced kidney early fibrosis, indicated by the pathology and fibrotic factor changes (α-SMA, collagen I, collagen VI, and fibronectin). Mechanically, GNA reduced enhancer of zeste homolog 2 (EZH2) and H3K27me3, promoted Smad7 transcription, and inhibited TGF-ß/Smad3 fibrotic signaling in injured kidneys. Moreover, with TGF-ß1-induced EZH2 increasing, GNA suppressed α-SMA, fibronectin and collagen levels in tubular epithelial TCMK-1 cells. Although partially decreasing EZH2, GNA did not influence fibrotic signaling in Smad7 siRNA-transfected TCMK-1 cells. CONCLUSION: Epigenetic inhibition of EZH2 by GNA ameliorated kidney fibrogenesis via regulating Smad7-meidated TGF-ß/Smad3 signaling.


Assuntos
Produtos Biológicos , Nefropatias , Obstrução Ureteral , Xantonas , Animais , Produtos Biológicos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Fibronectinas/metabolismo , Fibrose , Ácido Fólico/metabolismo , Histonas/metabolismo , Rim , Nefropatias/metabolismo , Camundongos , RNA Interferente Pequeno/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia , Xantenos , Xantonas/farmacologia
9.
Chin Med J (Engl) ; 135(12): 1414-1424, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35940879

RESUMO

BACKGROUND: The risk for chronic kidney disease (CKD) is influenced by genetic predisposition, sex, and lifestyle. Previous research indicates that coffee is a potentially protective factor in CKD. The current study aims to investigate whether sex disparity exists in the coffee-CKD association, and whether genetic risk of CKD or genetic polymorphisms of caffeine metabolism affect this association. METHODS: A total of 359,906 participants from the UK Biobank who were enrolled between 2006 and 2010 were included in this prospective cohort study, which aimed to estimate the hazard ratios for coffee intake and incident CKD using a Cox proportional hazard model. Allele scores of CKD and caffeine metabolism were additionally adjusted for in a subsample with qualified genetic data ( n = 255,343). Analyses stratified by genetic predisposition, comorbidities, and sex hormones were performed. Tests based on Bayesian model averaging were conducted to ascertain the robustness of the results. RESULTS: Coffee was inversely associated with CKD in a dose-dependent manner. The effects of coffee did not differ across different strata of genetic risk for CKD, but were more evident among slower genetically predicted caffeine metabolizers. Significant sex disparity was observed ( P value for interaction = 0.013), in that coffee drinking was only associated with the risk reduction of CKD in females. Subgroup analysis revealed that testosterone and sex hormone-binding globulin (SHBG), but not estradiol, modified the coffee-CKD association. CONCLUSIONS: In addition to the overall inverse coffee-CKD association that was observed in the general population, we could also establish that a sex disparity existed, in that females were more likely to experience the benefit of the association. Testosterone and SHBG may partly account for the sex disparity.


Assuntos
Café , Insuficiência Renal Crônica , Teorema de Bayes , Bancos de Espécimes Biológicos , Cafeína/análise , Feminino , Predisposição Genética para Doença , Hormônios Esteroides Gonadais , Humanos , Masculino , Estudos Prospectivos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Fatores de Risco , Globulina de Ligação a Hormônio Sexual/análise , Testosterona , Reino Unido/epidemiologia
10.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2430-2439, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35531690

RESUMO

A total of 15 batches of the substance reference of Guizhi Jia Gegen Decoction(GZGGD) were prepared and the characteristic fingerprints of them were established. Furthermore, the similarity of the fingerprints and peak attributes were explored. The extraction rate, and the content and the transfer rate ranges of the index components, puerarin, paeoniflorin, liquiritin, and ammonium glycyrrhizate were determined for the analysis of the quality value transfer. The result demonstrated that the fingerprints of the 15 batches of the samples showed high similarity(>0.99). A total of 15 characteristic peaks were identified from the fingerprints, with 10 for Puerariae Lobatae Radix, 1 for Cinnamomi Ramulus, 2 for Paeoniae Radix Alba, and 2 for Glycyrrhizae Radix et Rhizoma. The content of puerarin was 11.05-18.35 mg·g~(-1) and the average transfer rate was 21.27%-39.49%. The corresponding figures were 7.95-10.90 mg·g~(-1) and 23.28%-43.23% for paeoniflorin, 3.25-4.95 mg·g~(-1) and 32.31%-61.27% for ammonium glycyrrhizate, and 3.65-5.80 mg·g~(-1) and 14.57%-27.05% for liquiritin. The extraction rate of the 15 batches of samples was in the range of 16.85%-21.78%. In this paper, the quality value transfer of the substance reference of GZGGD was analyzed based on characteristic fingerprint, content of index components, and the extraction rate. This study is expected to lay a basis for the quality control and further development of GZGGD.


Assuntos
Compostos de Amônio , Medicamentos de Ervas Chinesas , Paeonia , Benchmarking , Cromatografia Líquida de Alta Pressão
11.
Plant Dis ; 105(7): 1926-1935, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33289407

RESUMO

The biocontrol efficacy of Bacillus amyloliquefaciens FS6 against seedling diseases and gray mold of ginseng (Panax ginseng), as well as application techniques, were evaluated in a series of field trials. FS6 fermentation broth showed a strong antagonistic effect against the ginseng fungal pathogens, and the inhibition rates on mycelial growth and spore germination were 84 to 88% and 71 to 72%, respectively. Field evaluation showed that combination of seed and soil treatments exhibited better protection than that of individual treatment alone. FS6 wettable powder soil treatment in combination with thiamethoxam plus metalaxyl-M plus fludioxonil for seed coating performed the best, with >83% overall control efficacy for seedling diseases. FS6 had a long-acting effect of >78% control efficacy on ginseng gray mold at 30 days after the last application, almost 2.5- and 2-fold better than that of B. amyloliquefaciens B7900 wettable powder and cyprodinil, respectively. In addition, FS6 reduced the diversity and relative abundance of fungi and affected the fungi and bacterial composition in the rhizosphere soil of ginseng. Therefore, FS6 can be used to effectively control seedling diseases and gray mold in ginseng.


Assuntos
Bacillus amyloliquefaciens , Agentes de Controle Biológico , Panax , Doenças das Plantas , Fungos , Doenças das Plantas/prevenção & controle , Plântula
12.
Chin J Integr Med ; 27(12): 919-926, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32572780

RESUMO

OBJECTIVE: To screen the key Chinese Herbal Medicines (KCHMs) against breast cancer by data mining, and analyze the potential mechanism of KCHMs using network pharmacology method. METHODS: Clinical prescriptions consisted of CHMs for treating breast cancer were screened, and then Traditional Chinese Medicine Inheritance Support System (TCMISS) was applied to obtain the KCHMs. Subsequently, active ingredients and corresponding target genes of KCHMs were searched by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and target genes of breast cancer were collected using OMIM and MalaCards. After that, the overlapping target genes of KCHMs and breast cancer were screened, and the protein-protein interaction (PPI) network was built. In addition, a network of "KCHMs-active ingredients-breast cancer-targets" was constructed by Cytoscape 3.7.1. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were performed with Database for Annotation, Visualization and Integrated Discovery (DAVID) database to reveal the action mechanism of KCHMs. RESULTS: A total of 7 KCHMs were identified, whose active ingredients include quercetin, luteolin, nobiletin, kaempferol, isorhamnetin, naringenin, and be-ta-sitosterol, etc. Based on protein-protein interaction analysis, core targets were ESR1, MYC, CCND1, EGFR, CASP3, ERBB2, etc. Several KEGG pathways (e.g, PI3K-Akt, p53, ErbB, and HIF-1 signaling pathways) were found. CONCLUSION: Based on the combination of the data mining method and network pharmacology approach, the therapeutic effect of KCHMs on breast cancer may be realized by acting on target genes and signaling pathways related to the formation and progression of breast cancer.


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Mineração de Dados , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Medicina Tradicional Chinesa , Farmacologia em Rede , Fosfatidilinositol 3-Quinases
13.
Food Chem ; 327: 127062, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32454279

RESUMO

Soy glycinin (11S) was mixed with soyasaponin (Ssa) to elucidate the mechanism(s) involved in the stabilization of emulsions by mixed systems based on dynamic interfacial tension and dilatational rheology at the oil-water interface. The short/long-term properties of oil-in-water emulsions stabilized by 11S-Ssa mixtures included droplet-size distribution, droplet ζ-potential, microstructure, and Turbiscan stability index. The combination of Ssa (0.05%) with 11S significantly affected the interfacial dilatational and emulsion properties although the interfacial properties were still dominated by the protein. Higher concentrations (0.1% and 0.2%) of Ssa combined with 11S synergistically decreased the interfacial tension, which was attributed to the interaction between 11S and Ssa. Using high Ssa concentrations (0.25%-0.5%) enhanced the long-term stability of emulsions (in response to external deformations) after 42 d. These results will aid the basic understanding of protein-Ssa interfacial adsorption during emulsion formation and can help prepare natural food additives for designing emulsions.


Assuntos
Globulinas/química , Glycine max/química , Saponinas/química , Proteínas de Soja/química , Adsorção , Óleo de Milho/química , Emulsões/química , Tensão Superficial , Água/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-32382293

RESUMO

OBJECTIVE: In this study, the data mining method was used to screen the core Chinese materia medicas (CCMMs) against primary liver cancer (PLC), and the potential mechanisms of CCMMs in treating PLC were analyzed based on network pharmacology. METHODS: Traditional Chinese medicine (TCM) prescriptions for treating PLC were obtained from a famous TCM doctor in Shenzhen, China. According to the data mining technique, the TCM Inheritance Support System (TCMISS) was applied to excavate the CCMMs in the prescriptions. Then, bioactive ingredients and corresponding targets of CCMMs were collected using three different TCM online databases, and target genes of PLC were obtained from GeneCards and OMIM. Afterwards, common targets of CCMMs and PLC were screened. Furthermore, a network of CCMMs bioactive ingredients and common target gene was constructed by Cytoscape 3.7.1, and gene ontology (GO) and signaling pathways analyses were performed to explain the mechanism of CCMMs in treating PLC. Besides, protein-protein interaction (PPI) analysis was used to identify key target genes of CCMMs, and the prognostic value of key target genes was verified using survival analysis. RESULTS: A total of 15 high-frequency Chinese materia medica combinations were found, and CCMMs (including Paeoniae Radix Alba, Radix Bupleuri, Macrocephalae Rhizoma, Coicis Semen, Poria, and Curcumae Radix) were identified by TCMISS. A total of 40 bioactive ingredients (e.g., quercetin, kaempferol, and naringenin) of CCMMs were obtained, and 202 common target genes of CCMMs and PLC were screened. GO analysis indicated that biological processes of CCMMs were mainly involved in response to drug, response to ethanol, etc. Pathway analysis demonstrated that CCMMs exerted its antitumor effects by acting on multiple signaling pathways, including PI3K-Akt, TNF, and MAPK pathways. Also, some key target genes of CCMMs were determined by PPI analysis, and four genes (MAPK3, VEGFA, EGF, and EGFR) were found to be correlated with survival in PLC patients. CONCLUSION: Based on data mining and network pharmacology methods, our results showed that the therapeutic effect of CCMMs on PLC may be realized by acting on multitargets and multipathways related to the occurrence and development of PLC.

15.
Int J Biol Macromol ; 148: 41-48, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917981

RESUMO

We obtained a new acidic soy hull polysaccharide (SHP-1) with a molecular weight (Mw) of 4.81 × 105 g/mol through ammonium oxalate and microwave assisted extraction. SHP-1 was mainly composed of galacturonic acid, galactose, rhamnose and arabinose (molar ratio = 46.59%:17.95%:14.77%:13.97%) with small amounts of fucose, glucose, mannose and xylose. The chemical structure was presumed to be of pectin-I type, consisting of 2/3 HGA and 1/3 RG-I. Furthermore, the rheological information and the chain morphology of SHP-1 were different in five solvents. Surfactant, salt and alkali solutions enhanced the solubility and flexibility of the polysaccharide, but the polysaccharide showed decreased fluidity under acidic conditions. The addition of ions and alkali increased the consistency coefficient of the solution, but the effect was far less than that of the cross-linking morphology. The structural and morphological information of purified SHP should aid in further study of its structure-function relationships and applications.


Assuntos
Glycine max/química , Conformação Molecular , Pectinas/química , Polissacarídeos/química , Arabinose/análise , Cromatografia em Gel , Galactose/análise , Ácidos Hexurônicos/análise , Micro-Ondas , Peso Molecular , Ácido Oxálico/química , Pectinas/isolamento & purificação , Polissacarídeos/isolamento & purificação , Ramnose/análise , Reologia , Solubilidade
16.
J Med Food ; 22(12): 1271-1279, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31718395

RESUMO

Hepatic injury is significant in the pathogenesis and development of many types of liver diseases. Punicalagin (PU) is a bioactive antioxidant polyphenol found in pomegranates. To explore its protective effect against carbon tetrachloride (CCl4)-induced liver injury and the mechanism, Institute of Cancer Research (ICR) mice and L02 cells were used to observe the changes of serum biochemical indicators, histopathological liver structure, cell viability, antioxidative indices, and autophagy-related proteins were assessed. In ICR mice, PU ameliorated the CCl4-induced increase of the serum aspartate aminotransferase, alanine aminotransferase, the activity of liver lactate dehydrogenase, and the damage of histopathological structure, and exhibited a hepatoprotective effect against CCl4. PU attenuated oxidative stress by decreasing the liver malondialdehyde level and increasing the activities of liver superoxide dismutase, glutathione peroxidase, and the expression of the liver nuclear factor E2-related factor (Nrf2) protein. Furthermore, according to the vivo and vitro experiments, PU might activate autophagy through the mediation of the Akt/FOXO3a and P62/Nrf2 signaling pathway. Taken together, these results suggest that PU may protect against CCl4-induced liver injury through the upregulation of antioxidative activities and autophagy.


Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Tetracloreto de Carbono/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Taninos Hidrolisáveis/farmacologia , Fígado/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteína Forkhead Box O3 , Glutationa Peroxidase/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Oncogênica v-akt , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Punica granatum/química , Soro/química , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
17.
BMC Complement Altern Med ; 19(1): 271, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31627724

RESUMO

BACKGROUND: Plant secondary metabolites and phytochemicals that exhibit strong bioactivities have potential to be developed as safe and efficient natural antimicrobials against food contamination and addressing antimicrobial resistance caused by the overuse of chemical synthetic preservative. In this study, the chemical composition, antibacterial activities and related mechanism of the extracts of the valonia and the shell of Quercus variabilis Blume were studied to determine its potential as a safe and efficient natural antimicrobial. METHODS: The phenolic compositions of valonia and shell extracts were determined by folin-ciocalteau colourimetric method, sodium borohydride/chloranil-based assay and the aluminium chloride method and then further identified by the reverse-phase HPLC analysis. The antibacterial activities of valonia and shell extracts were evaluated by the agar disk diffusion method and agar dilution method. The related antibacterial mechanism was explored successively by the membrane of pathogens effect, phosphorous metabolism, whole-cell proteins and the microbial morphology under scanning electron microscopy. RESULTS: The n-butanol fraction and water fraction of valonia along with n-butanol fraction of the shell contains enrich phenolics including ellagic acid, theophylline, caffeic acid and tannin acid. The n-butanol fraction and ethanol crude extracts of valonia exhibited strong antibacterial activities against Salmonella paratyphi A (S. paratyphi A) and Staphylococcus aureus (S. aureus) with the DIZ values ranged from 10.89 ± 0.12 to 15.92 ± 0.44, which were greater than that of the Punica granatum (DIZ: 10.22 ± 0.18 and 10.30 ± 0.21). The MIC values of the n-butanol fraction and ethanol crude extracts of valonia against S. paratyphi A and S. aureus were 1.25 mg/ml and 0.625 mg/ml. The related antibacterial mechanism of n-butanol fraction and ethanol crude extracts of valonia may be attributed to their strong impact on membrane permeability and cellular metabolism. Those extracts exhibited strong antibacterial activity according to inhibit the synthesis of bacterial proteins and seriously change morphological structure of bacterial cells. CONCLUSIONS: The n-butanol fraction and ethanol crude extracts of valonia had reasonably good antibacterial activities against S. paratyphi A and S. aureus. This study suggests possible application of valonia and shell as natural antimicrobials or preservatives for food and medical application.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Quercus/química , Salmonella paratyphi A/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Nozes/química , Extratos Vegetais/isolamento & purificação , Salmonella paratyphi A/crescimento & desenvolvimento , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento
18.
BMC Microbiol ; 19(1): 205, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477005

RESUMO

BACKGROUND: Cross-resistance, a phenomenon that a pathogen resists to one antimicrobial compound also resists to one or several other compounds, is one of major threats to human health and sustainable food production. It usually occurs among antimicrobial compounds sharing the mode of action. In this study, we determined the sensitivity profiles of Alternaria alternata, a fungal pathogen which can cause diseases in many crops to two fungicides (mancozeb and difenoconazole) with different mode of action using a large number of isolates (234) collected from seven potato fields across China. RESULTS: We found that pathogens could also develop cross resistance to fungicides with different modes of action as indicated by a strong positive correlation between mancozeb and difenoconazole tolerances to A. alternata. We also found a positive association between mancozeb tolerance and aggressiveness of A. alternata, suggesting no fitness penalty of developing mancozeb resistance in the pathogen and hypothesize that mechanisms such as antimicrobial compound efflux and detoxification that limit intercellular accumulation of natural/synthetic chemicals in pathogens might account for the cross-resistance and the positive association between pathogen aggressiveness and mancozeb tolerance. CONCLUSIONS: The detection of cross-resistance among different classes of fungicides suggests that the mode of action alone may not be an adequate sole criterion to determine what components to use in the mixture and/or rotation of fungicides in agricultural and medical sects. Similarly, the observation of a positive association between the pathogen's aggressiveness and tolerance to mancozeb suggests that intensive application of site non-specific fungicides might simultaneously lead to reduced fungicide resistance and enhanced ability to cause diseases in pathogen populations, thereby posing a greater threat to agricultural production and human health. In this case, the use of evolutionary principles in closely monitoring populations and the use of appropriate fungicide applications are important for effective use of the fungicides and durable infectious disease management.


Assuntos
Alternaria/efeitos dos fármacos , Farmacorresistência Fúngica , Fungicidas Industriais/farmacologia , Alternaria/genética , Alternaria/isolamento & purificação , Alternaria/fisiologia , China , Dioxolanos/farmacologia , Maneb/farmacologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Triazóis/farmacologia , Zineb/farmacologia
19.
Mol Med Rep ; 20(1): 655-663, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115566

RESUMO

The high glucose (HG)­induced epithelial­mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) serves an important role in peritoneal fibrosis (PF) during peritoneal dialysis. Our previous study reported that zinc (Zn) supplementation prevented the HG­induced EMT of rat PMCs in vitro. In the present study, the role of Zn in HG­induced EMT was investigated in vivo using a rat model of PF. Additionally, the molecular mechanisms underlying HG­induced EMT were studied in human PMCs (HPMCs). In the rat model of PF, HG treatment increased the glucose transfer capacity and decreased the ultrafiltration volume. Histopathological analysis revealed peritoneal thickening, increased expression of vimentin and decreased expression of E­cadherin. ZnSO4 significantly ameliorated the aforementioned changes, whereas Zn inhibition by clioquinol significantly aggravated the effects of HG on rats. The effects of Zn on HPMCs was assessed using western blot analysis, Transwell assays and flow cytometry. It was revealed that Zn also significantly suppressed the extent of the EMT, and reduced reactive oxygen species production and the migratory ability of HG­induced HPMCs, whereas Zn inhibition by N',N',N',N'­tetrakis (2­pyridylmethyl) ethylenediamine significantly potentiated the HG­induced EMT of HPMCs. HG­stimulated HPMCs exhibited increased expression of nuclear factor­like 2 (Nrf2) in the nucleus, and total cellular NAD(P)H quinone dehydrogenase 1 (NQO1) and heme oxygenase-1 (HO­1), the target proteins of the Nrf2 antioxidant pathway. Zn supplementation further promoted nuclear Nrf2 expression, and increased the expression of target proteins of the Nrf2 antioxidant pathway, whereas Zn depletion decreased nuclear Nrf2, NQO1 and HO­1 expression compared with the HG group. In conclusion, Zn supplementation was proposed to suppress the effects of HG on the EMT by stimulating the Nrf2 antioxidant pathway and subsequently reducing oxidative stress in PMCs.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose Peritoneal/tratamento farmacológico , Peritônio/efeitos dos fármacos , Zinco/farmacologia , Animais , Caderinas/genética , Clioquinol/farmacologia , Suplementos Nutricionais , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/efeitos adversos , Glucose/farmacologia , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/genética , Diálise Peritoneal , Fibrose Peritoneal/genética , Peritônio/metabolismo , Peritônio/patologia , Ratos
20.
Plant Physiol ; 180(1): 571-581, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782963

RESUMO

To be successful plant pathogens, microbes use "effector proteins" to manipulate host functions to their benefit. Identifying host targets of effector proteins and characterizing their role in the infection process allow us to better understand plant-pathogen interactions and the plant immune system. Yeast two-hybrid analysis and coimmunoprecipitation were used to demonstrate that the Phytophthora infestans effector AVIRULENCE 2 (PiAVR2) interacts with all three BRI1-SUPPRESSOR1-like (BSL) family members from potato (Solanum tuberosum). Transient expression of BSL1, BSL2, and BSL3 enhanced P. infestans leaf infection. BSL1 and BSL3 suppressed INFESTIN 1 elicitin-triggered cell death, showing that they negatively regulate immunity. Virus-induced gene silencing studies revealed that BSL2 and BSL3 are required for BSL1 stability and show that basal levels of immunity are increased in BSL-silenced plants. Immune suppression by BSL family members is dependent on the brassinosteroid-responsive host transcription factor CIB1/HBI1-like 1. The P. infestans effector PiAVR2 targets all three BSL family members in the crop plant S. tuberosum These phosphatases, known for their role in growth-promoting brassinosteroid signaling, all support P. infestans virulence and thus can be regarded as susceptibility factors in late blight infection.


Assuntos
Phytophthora infestans/patogenicidade , Imunidade Vegetal , Proteínas de Plantas/imunologia , Fatores de Virulência/metabolismo , Inativação Gênica , Interações Hospedeiro-Patógeno , Phytophthora infestans/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA