Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068940

RESUMO

The principal difference between hydroponics and other substrate cultivation methods is the flowing liquid hydroponic cultivation substrate. Our previous studies have revealed that a suitable flowing environment of nutrient solution promoted root development and plant growth, while an excess flow environment was unfavorable for plants. To explain the thigmomorphogenetic response of excess flow-induced metabolic changes, six groups of lettuce (Lactuca sativa L.), including two flow conditions and three time periods, were grown. Compared with the plants without flow, the plants with flow showed decreased root fresh weight, total root length, root surface area, and root volume but increased average root diameter and root density. The roots with flow had more upregulated metabolites than those without flow, suggesting that the flow may trigger metabolic synthesis and activity. Seventy-nine common differential metabolites among six groups were screened, and enrichment analysis showed the most significant enrichment in the arginine biosynthesis pathway. Arginine was present in all the groups and exhibited greater concentrations in roots with flow than without flow. It can be speculated from the results that a high-flowing environment of nutrient solution promotes arginine synthesis, resulting in changes in root morphology. The findings provide insights on root thigmomorphogenesis affected by its growing conditions and help understand how plants respond to environmental mechanical forces.


Assuntos
Plantas , Hidroponia/métodos , Nutrientes , Arginina
2.
Artigo em Inglês | MEDLINE | ID: mdl-37807416

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMOP) is a classic type of osteoporosis that has gradually become a significant health problem worldwide. There is an urgent need for a safe alternative therapeutic agent considering the poor therapeutic strategies currently available for this disease. The roots and bark of the Morus australis tree (Moraceae) are used to make a traditional Chinese medicine known as "Morusin", and accumulating evidence has demonstrated its multiple activities, such as anti-inflammatory and anti-tumor effects. OBJECTIVE: In this study, we aim to explore the effect of Morusin on mouse osteoclasts and its mechanism. METHODS: In this study, we explored the inhibitory effects of Morusin on murine osteoclasts in vitro and its mechanism, and the protective effect of Morusin on an ovariectomy (OVX)-induced osteoporosis model in vivo. RESULTS: The results showed that Morusin prevented OVX-induced bone loss and dramatically decreased RANKL-induced osteoclastogenesis. Morusin interfered with RANKL-activated NF- κB, MAPK, and PI3K/AKT signaling pathways. The expression of three master factors that control osteoclast differentiation, c-Fos, NFATc1, and c-Jun, was reduced by Morusin treatment. Collectively, in vitro results indicated that Morusin has a protective effect on OVX-induced bone loss in a mouse model. CONCLUSION: Our data provide encouraging evidence that Morusin may be an effective treatment for PMOP.

4.
Am J Transl Res ; 13(8): 8742-8753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539991

RESUMO

OBJECTIVE: Osteoarthritis (OA) is one of the most common chronic diseases, which is characterized by cartilage degeneration, subchondral osteosclerosis, and synovitis. Accumulating evidence has shown that galangin, a flavonoid derived from medicinal herbs, exhibits numerous pharmacological activities in various diseases. This study aimed to investigate the effects of galangin on interleukin (IL)-1ß-induced inflammation in mouse chondrocytes and explore the underlying mechanisms. METHODS: In this study, we investigated the protective effects of galangin on IL-1ß-induced inflammatory response in vitro using the CCK-8 assay, RT-qPCR, western blotting, and immunofluorescence staining. In addition, the therapeutic effects of galangin on the anterior cruciate ligament transection (ACLT) mouse model were also explored in vivo. Results: Galangin treatment suppressed the expression of IL-1ß-induced inflammatory cytokines, such as nitric oxide synthase, cyclooxygenase-2, TNF-α, and IL-6. Furthermore, galangin attenuated hypertrophic conversion and the extracellular matrix degradation via inhibiting the expression of catabolic enzymes. Mechanistically, galangin inhibited the activation of the JNK and ERK MAPK pathways and nuclear factor kappa-B (NF-κB) signaling pathway. In addition, galangin treatment ameliorated cartilage degeneration in an OA model in vivo. Conclusion: Galangin suppressed the IL-ß-induced inflammatory response in vitro and ameliorated cartilage degeneration in vivo via inhibiting the NF-κB pathway and JNK and ERK pathways, suggesting its potential as an effective candidate for the treatment of OA.

5.
Front Plant Sci ; 10: 1563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867029

RESUMO

Understanding the wavelength dependence of plant responses is essential for optimizing production and quality of indoor plant cultivation. UVA is the main component of solar UV radiation, but its role on plant growth is poorly understood. Here, two experiments were conducted to examine whether UVA supplementation is beneficial for indoor plant cultivation. Lettuce (Lactuca sativa L. cv. "Klee") was grown under mixed blue, red, and far-red light with photon flux density of 237 µmol m-2 s-1 in the growth room; photoperiod was 16 h. In the first experiment, three UVA intensities with peak wavelengths at 365 nm were used: 10 (UVA-10), 20 (UVA-20), and 30 (UVA-30) µmol m-2 s-1, respectively. In the second experiment, 10 µmol m-2 s-1 UVA radiation were given for 5 (UVA-5d), 10 (UVA-10d), and 15 (UVA-15d) days before harvest on day 15, respectively. Compared with control (no UVA), shoot dry weight was increased by 27%, 29%, and 15% in the UVA-10, UVA-20, and UVA-30 treatments, respectively, which correlated with 31% (UVA-10), 32% (UVA-20), and 14% (UVA-30) larger leaf area. Shoot dry weight under the treatments of UVA-5d, UVA-10d, and UVA-15d was increased by 18%, 32%, and 30%, respectively, and leaf area was increased by 15%-26%. For both experiments, UVA radiation substantially enhanced secondary metabolites accumulation, e.g. anthocyanin and ascorbic acid contents were increased by 17%-49% and 47%-80%, respectively. Moreover, plants grown under the UVA-30 treatment were stressed, as indicated by lipid peroxidation and lower maximum quantum efficiency of photosystem II photochemistry (Fv/Fm). We conclude that UVA supplementation not only stimulates biomass production in controlled environments, but also enhances secondary metabolite accumulation.

6.
Genes (Basel) ; 10(8)2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344878

RESUMO

To systematically evaluate the ecological changes of an active offshore petroleum production system, the variation of microbial communities at several sites (virgin field, wellhead, storage tank) of an oil production facility in east China was investigated by sequencing the V3 to V4 regions of 16S ribosomal ribonucleic acid (rRNA) of microorganisms. In general, a decrease of microbial community richness and diversity in petroleum mining was observed, as measured by operational taxonomic unit (OTU) numbers, α (Chao1 and Shannon indices), and ß (principal coordinate analysis) diversity. Microbial community structure was strongly affected by environmental factors at the phylum and genus levels. At the phylum level, virgin field and wellhead were dominated by Proteobacteria, while the storage tank had higher presence of Firmicutes (29.3-66.9%). Specifically, the wellhead displayed a lower presentence of Proteobacteria (48.6-53.4.0%) and a higher presence of Firmicutes (24.4-29.6%) than the virgin field. At the genus level, the predominant genera were Ochrobactrum and Acinetobacter in the virgin field, Lactococcus and Pseudomonas in the wellhead, and Prauseria and Bacillus in the storage tank. Our study revealed that the microbial community structure was strongly affected by the surrounding environmental factors, such as temperature, oxygen content, salinity, and pH, which could be altered because of the oil production. It was observed that the various microbiomes produced surfactants, transforming the biohazard and degrading hydro-carbon. Altering the microbiome growth condition by appropriate human intervention and taking advantage of natural microbial resources can further enhance oil recovery technology.


Assuntos
Microbiota , Campos de Petróleo e Gás/microbiologia , Código de Barras de DNA Taxonômico , Petróleo/microbiologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA