Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Plant Sci ; 14: 1138893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056503

RESUMO

Hemsleya chinensis is a Chinese traditional medicinal plant, containing cucurbitacin IIa (CuIIa) and cucurbitacin IIb (CuIIb), both of which have a wide range of pharmacological effects, including antiallergic, anti-inflammatory, and anticancer properties. However, few studies have been explored on the key enzymes that are involved in cucurbitacins biosynthesis in H. chinensis. Oxidosqualene cyclase (OSC) is a vital enzyme for cyclizing 2,3-oxidosqualene and its analogues. Here, a gene encoding the oxidosqualene cyclase of H. chinensis (HcOSC6), catalyzing to produce cucurbitadienol, was used as a template of mutagenesis. With the assistance of AlphaFold2 and molecular docking, we have proposed for the first time to our knowledge the 3D structure of HcOSC6 and its binding features to 2,3-oxidosqualene. Mutagenesis experiments on HcOSC6 generated seventeen different single-point mutants, showing that single-residue changes could affect its activity. Three key amino acid residues of HcOSC6, E246, M261 and D490, were identified as a prominent role in controlling cyclization ability. Our findings not only comprehensively characterize three key residues that are potentially useful for producing cucurbitacins, but also provide insights into the significant role they could play in metabolic engineering.

2.
Front Plant Sci ; 14: 1259347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239219

RESUMO

Bergenin is a typical carbon glycoside and the primary active ingredient in antitussive drugs widely prescribed for central cough inhibition in China. The bergenin extraction industry relies on the medicinal plant species Bergenia purpurascens and Ardisia japonica as their resources. However, the bergenin biosynthetic pathway in plants remains elusive. In this study, we functionally characterized a shikimate dehydrogenase (SDH), two O-methyltransferases (OMTs), and a C-glycosyltransferase (CGT) involved in bergenin synthesis through bioinformatics analysis, heterologous expression, and enzymatic characterization. We found that BpSDH2 catalyzes the two-step dehydrogenation process of shikimic acid to form gallic acid (GA). BpOMT1 and AjOMT1 facilitate the methylation reaction at the 4-OH position of GA, resulting in the formation of 4-O-methyl gallic acid (4-O-Me-GA). AjCGT1 transfers a glucose moiety to C-2 to generate 2-Glucosyl-4-O-methyl gallic acid (2-Glucosyl-4-O-Me-GA). Bergenin production ultimately occurs in acidic conditions or via dehydration catalyzed by plant dehydratases following a ring-closure reaction. This study for the first time uncovered the biosynthetic pathway of bergenin, paving the way to rational production of bergenin in cell factories via synthetic biology strategies.

3.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6149-6162, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951242

RESUMO

R2 R3-MYB transcription factors are ubiquitous in plants, playing a role in the regulation of plant growth, development, and secondary metabolism. In this paper, the R2 R3-MYB transcription factors were identified by bioinformatics analysis of the genomic data of Erigeron breviscapus, and their gene sequences, structures, physical and chemical properties were analyzed. The functions of R2 R3-MYB transcription factors were predicted by cluster analysis. Meanwhile, the expression patterns of R2 R3-MYB transcription factors in response to hormone treatments were analyzed. A total of 108 R2 R3-MYB transcription factors, named EbMYB1-EbMYB108, were identified from the genome of E. breviscapus. Most of the R2 R3-MYB genes carried 2-4 exons. The phylogenetic tree of MYBs in E. breviscapus and Arabidopsis thaliala was constructed, which classified 234 MYBs into 30 subfamilies. The MYBs in the five MYB subfamilies of A.thaliala were clustered into independent clades, and those in E. breviscapus were clustered into four clades. The transcriptome data showed that MYB genes were differentially expressed in different tissues of E. breviscapus and in response to the treatments with exogenous hormones such as ABA, SA, and GA for different time. The transcription of 13 R2 R3-MYB genes did not change significantly, and the expression patterns of some genes were up-regulated or down-regulated with the extension of hormone treatment time. This study provides a theoretical basis for revealing the mechanisms of R2 R3-MYB transcription factors in regulating the growth and development, stress(hormone) response, and active ingredient accumulation in E. breviscapus.


Assuntos
Erigeron , Genes myb , Proteínas de Plantas , Fatores de Transcrição , Erigeron/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Planta ; 253(5): 91, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33818668

RESUMO

MAIN CONCLUSION: Two UDP-glycosyltransferases from Panax japonicus var. major were identified, and the biosynthetic pathways of three oleanane-type ginsenosides (chikusetsusaponin IVa, ginsenoside Ro, zingibroside R1) were elucidated. Chikusetsusaponin IVa and ginsenoside Ro are primary active components formed by stepwise glycosylation of oleanolic acid in five medicinal plants of the genus Panax. However, the key UDP-glycosyltransferases (UGTs) in the biosynthetic pathway of chikusetsusaponin IVa and ginsenoside Ro are still unclear. In this study, two UGTs (PjmUGT1 and PjmUGT2) from Panax japonicus var. major involved in the biosynthesis of chikusetsusaponin IVa and ginsenoside Ro were identified based on bioinformatics analysis, heterologous expression and enzyme assays. The results show that PjmUGT1 can transfer a glucose moiety to the C-28 carboxyl groups of oleanolic acid 3-O-ß-D-glucuronide and zingibroside R1 to form chikusetsusaponin IVa and ginsenoside Ro, respectively. Meanwhile, PjmUGT2 can transfer a glucose moiety to oleanolic acid 3-O-ß-D-glucuronide and chikusetsusaponin IVa to form zingibroside R1 and ginsenoside Ro. This work uncovered the biosynthetic mechanism of chikusetsusaponin IVa and ginsenoside Ro, providing the rational production of valuable saponins through synthetic biology strategy.


Assuntos
Ginsenosídeos/metabolismo , Glicosiltransferases/metabolismo , Ácido Oleanólico/análogos & derivados , Panax/metabolismo , Difosfato de Uridina/metabolismo , Glicosiltransferases/análise , Glicosiltransferases/genética , Ácido Oleanólico/metabolismo , Panax/enzimologia
5.
BMC Plant Biol ; 19(1): 451, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655543

RESUMO

BACKGROUND: Taproot thickening is a complex biological process that is dependent on the coordinated expression of genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb that is characterized by an enlarged taproot as the main organ of saponin accumulation. However, the molecular mechanisms of taproot enlargement are poorly understood. RESULTS: A total of 29,957 differentially expressed genes (DEGs) were identified during the thickening process in the taproots of P. notoginseng. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that DEGs associated with "plant hormone signal transduction," "starch and sucrose metabolism," and "phenylpropanoid biosynthesis" were predominantly enriched. Further analysis identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, and Starch branching enzyme I) and metabolites (e.g., sucrose, glucose, fructose, malate, and arginine) that potentially control taproot thickening. Several aspects including hormone crosstalk, transcriptional regulation, homeostatic regulation between sugar and starch, and cell wall metabolism, were identified as important for the thickening process in the taproot of P. notoginseng. CONCLUSION: The results provide a molecular regulatory network of taproot thickening in P. notoginseng and facilitate the further characterization of the genes responsible for taproot formation in root medicinal plants or crops.


Assuntos
Redes Reguladoras de Genes , Metaboloma , Panax notoginseng/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Transcriptoma , Regulação da Expressão Gênica de Plantas , Panax notoginseng/crescimento & desenvolvimento , Panax notoginseng/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia
6.
Planta ; 249(2): 393-406, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30219960

RESUMO

MAIN CONCLUSION: Oleanolic acid glucuronosyltransferase (OAGT) genes synthesizing the direct precursor of oleanane-type ginsenosides were discovered. The four recombinant proteins of OAGT were able to transfer glucuronic acid at C-3 of oleanolic acid that yields oleanolic acid 3-O-ß-glucuronide. Ginsenosides are the primary active components in the genus Panax, and great efforts have been made to elucidate the mechanisms underlying dammarane-type ginsenoside biosynthesis. However, there is limited information on oleanane-type ginsenosides. Here, high-performance liquid chromatography analysis demonstrated that oleanane-type ginsenosides (particularly ginsenoside Ro and chikusetsusaponin IV and IVa) are the abundant ginsenosides in Panax zingiberensis, an extremely endangered Panax species in southwest China. These ginsenosides are derived from oleanolic acid 3-O-ß-glucuronide, which may be formed from oleanolic acid catalyzed by an unknown oleanolic acid glucuronosyltransferase (OAGT). Transcriptomic analysis of leaves, stems, main roots, and fibrous roots of P. zingiberensis was performed, and a total of 46,098 unigenes were obtained, including all the identified homologous genes involved in ginsenoside biosynthesis. The most upstream genes were highly expressed in the leaves, and the UDP-glucosyltransferase genes were highly expressed in the roots. This finding indicated that the precursors of ginsenosides are mainly synthesized in the leaves and transported to different parts for the formation of particular ginsenosides. For the first time, enzyme activity assay characterized four genes (three from P. zingiberensis and one from P. japonicus var. major, another Panax species with oleanane-type ginsenosides) encoding OAGT, which particularly transfer glucuronic acid at C-3 of oleanolic acid to form oleanolic acid 3-O-ß-glucuronide. Taken together, our study provides valuable genetic information for P. zingiberensis and the genes responsible for synthesizing the direct precursor of oleanane-type ginsenosides.


Assuntos
Genes de Plantas/genética , Ginsenosídeos/biossíntese , Glucuronosiltransferase/genética , Ácido Oleanólico/análogos & derivados , Panax/genética , Proteínas de Plantas/genética , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Glucuronatos/biossíntese , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Ácido Oleanólico/biossíntese , Ácido Oleanólico/metabolismo , Panax/enzimologia , Panax/metabolismo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes , Análise de Sequência de DNA
7.
PLoS One ; 13(11): e0202848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30500823

RESUMO

Marsdenia tenacissima is a well-known anti-cancer medicinal plant used in traditional Chinese medicine, which often grows on the karst landform and the water conservation capacity of land is very poorly and drought occurrences frequently. We found M. tenacissima has strong drought resistance because of continuousdrought16 d, the leaves of M. tenacissima were fully curly and dying. But the leaves were fully almost recovering after re-watering 24h. The activity of SOD and POD were almost doubled under drought stress. The content of osmotic regulating substance proline and soluble sugar were three times than control group. But after re-watering, these indexes were declined rapidly. Three cDNA libraries of control, drought stress, and re-watering treatments were constructed. There were 43,129,228, 47,116,844, and 42,815,454 clean reads with Q20 values of 98.06, 98.04, and 97.88respectively.SRA accession number of raw data was PRJNA498187 on NCBI. A total of 8672, 6043, and 6537 differentially expressed genes (DEGs) were identified in control vs drought stress, control vs re-watering, and drought stress vs re-watering, respectively. In addition, 1039, 1016, and 980 transcription factors (TFs) were identified, respectively. Among them, 363, 267, and 299 TFs were identified as DEGs in drought stress, re-watering, and drought stress and re-watering, respectively. These differentially expressed TFs mainly belonged to the bHLH, bZIP, C2H2, ERF, MYB, MYB-related, and NAC families. A comparative analysis found that 1174 genes were up-regulated and 2344 were down-regulated under drought stress and this pattern was the opposite to that found after re-watering. Among the up-regulated genes, 64 genes were homologous to known functional genes that directly protect plants against drought stress. Furthermore, 44 protein kinases and 38 TFs with opposite expression patterns under drought stress and re-watering were identified, which are possibly candidate regulators for drought stress resistance in M. tenacissima. Our study is the first to characterize the M. tenacissima transcriptome in response to drought stress, and will serve as a useful resource for future studies on the functions of candidate protein kinases and TFs involved in M. tenacissima drought stress resistance.


Assuntos
Resistência à Doença/genética , Marsdenia , Proteínas de Plantas , RNA de Plantas , Estresse Fisiológico , Fatores de Transcrição , Desidratação/genética , Desidratação/metabolismo , Regulação da Expressão Gênica de Plantas , Marsdenia/genética , Marsdenia/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Análise de Sequência de RNA , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcriptoma
8.
Front Plant Sci ; 9: 1231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197651

RESUMO

Plant-derived terpenes are effective in treating chronic dysentery, rheumatism, hepatitis, and hyperlipemia. Thus, understanding the molecular basis of terpene biosynthesis in some terpene-abundant Chinese medicinal plants is of great importance. Abundant in mono- and sesqui-terpenes, Rhodomyrtus tomentosa (Ait.) Hassk, an evergreen shrub belonging to the family Myrtaceae, is widely used as a traditional Chinese medicine. In this study, (+)-α-pinene and ß-caryophyllene were detected to be the two major components in the leaves of R. tomentosa, in which (+)-α-pinene is higher in the young leaves than in the mature leaves, whereas the distribution of ß-caryophyllene is opposite. Genome-wide transcriptome analysis of leaves identified 138 unigenes potentially involved in terpenoid biosynthesis. By integrating known biosynthetic pathways for terpenoids, 7 candidate genes encoding terpene synthase (RtTPS1-7) that potentially catalyze the last step in pinene and caryophyllene biosynthesis were further characterized. Sequence alignment analysis showed that RtTPS1, RtTPS3 and RtTPS4 do not contain typical N-terminal transit peptides (62-64aa), thus probably producing multiple isomers and enantiomers by terpenoid isomerization. Further enzyme activity in vitro confirmed that RtTPS1-4 mainly produce (+)-α-pinene and (+)-ß-pinene, as well as small amounts of (-)-α-pinene and (-)-ß-pinene with GPP, while RtTPS1 and RtTPS3 are also active with FPP, producing ß-caryophyllene, along with a smaller amount of α-humulene. Our results deepen the understanding of molecular mechanisms of terpenes biosynthesis in Myrtaceae.

9.
Front Plant Sci ; 7: 1209, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579029

RESUMO

BACKGROUND: The medicinal herb, Pinellia ternata, is purported to be an anti-emetic with analgesic and sedative effects. Alkaloids are the main biologically active compounds in P. ternata, especially ephedrine that is a phenylpropylamino alkaloid specifically produced by Ephedra and Catha edulis. However, how ephedrine is synthesized in plants is uncertain. Only the phenylalanine ammonia lyase (PAL) and relevant genes in this pathway have been characterized. Genomic information of P. ternata is also unavailable. RESULTS: We analyzed the transcriptome of the tuber of P. ternata with the Illumina HiSeq™ 2000 sequencing platform. 66,813,052 high-quality reads were generated, and these reads were assembled de novo into 89,068 unigenes. Most known genes involved in benzoic acid biosynthesis were identified in the unigene dataset of P. ternata, and the expression patterns of some ephedrine biosynthesis-related genes were analyzed by reverse transcription quantitative real-time PCR (RT-qPCR). Also, 14,468 simple sequence repeats (SSRs) were identified from 12,000 unigenes. Twenty primer pairs for SSRs were randomly selected for the validation of their amplification effect. CONCLUSION: RNA-seq data was used for the first time to provide a comprehensive gene information on P. ternata at the transcriptional level. These data will advance molecular genetics in this valuable medicinal plant.

10.
Front Plant Sci ; 7: 673, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242873

RESUMO

BACKGROUND: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable. PRINCIPAL FINDINGS: A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80%) were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG, and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant. CONCLUSION: The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

11.
Zhongguo Zhong Yao Za Zhi ; 41(20): 3773-3781, 2016 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-28929655

RESUMO

Panax notoginseng is a commonly used traditional Chinese medicine with blood activating effect while has continuous cropping obstacle problem in planting process. In present study, a semimicroextraction method with water-saturated n-butanol on 0.1 g notoginseng sample was established with good repeatability (RSD<2.5%) and 9.6%-20.6% higher extraction efficiency of seven saponins than the conventional method. A total of 16 characteristic peaks were identified by LC-MS-IT-TOF, including eight 20(S)-protopanaxatriol (PPT) type saponins and eight 20(S)-protopanaxadiol (PPD) type saponins. The established method was utilized to evaluate the quality of notoginseng samples cultivated by manual intervened methods to overcome continuous cropping obstacles.As a result, HPLC fingerprint similarity, content of Fa and ratio of notoginsenoside K and notoginsenoside Fa (N-K/Fa) were found out to be as valuatable markers of the quality of samples in continuous cropping obstacle research, of which N-K/Fa could also be applied to the analysis of notoginseng samples with different growth years.Notoginseng samples with continuous cropping obstacle had HPLC fingerprint similarity lower than 0.87, in consistent with normal sample, and had significant lower content of notoginsenoside Fa and significant higher N-K/Fa (2.35-4.74) than normal group (0.45-1.33). All samples in the first group with manual intervention showed high similarity with normal group (>0.87), similar content of common peaks and N-K/Fa (0.42-2.06). The content of notoginsenoside K in the second group with manual intervention was higher than normal group. All samples except two displayed similarity higher than 0.87 and possessed content of 16 saponins close to normal group. The result showed that notoginseng samples with continuous cropping obstacle had lower quality than normal sample. And manual intervened methods could improve their quality in different levels.The method established in this study was simple, fast and accurate, and the markers may provide new guides for quality control in continuous cropping obstacle research of notoginseng.


Assuntos
Agricultura/métodos , Panax notoginseng/química , Saponinas/análise , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Sapogeninas
12.
BMC Plant Biol ; 15: 248, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26463824

RESUMO

BACKGROUND: Self-incompatibility (SI) is a widespread and important mating system that promotes outcrossing in plants. Erigeron breviscapus, a medicinal herb used widely in traditional Chinese medicine, is a self-incompatible species of Asteraceae. However, the genetic characteristics of SI responses in E. breviscapus remain largely unknown. To understand the possible mechanisms of E. breviscapus in response to SI, we performed a comparative transcriptomic analysis with capitulum of E. breviscapus after self- and cross-pollination, which may provide valuable information for analyzing the candidate SI-associated genes of E. breviscapus. METHODS: Using a high-throughput next-generation sequencing (Illumina) approach, the transcriptionexpression profiling of the different genes of E. breviscapus were obtained, some results were verified by quantitative real time PCR (qRT-PCR). RESULTS: After assembly, 63,485 gene models were obtained (average gene size 882 bp; N50 = 1485 bp), among which 38,540 unigenes (60.70% of total gene models) were annotated by comparisons with four public databases (Nr, Swiss-Prot, KEGG and COG): 38,338 unigenes (60.38% of total gene models) showed high homology with sequences in the Nr database. Differentially expressed genes were identified among the three cDNA libraries (non-, self- and cross-pollinated capitulum of E. breviscapus), and approximately 230 genes might be associated with SI responses. Several these genes were upregulated in self-pollinated capitulum but downregulated in cross-pollinated capitulum, such as SRLK (SRK-like) and its downstream signal factor, MLPK. qRT-PCR confirmed that the expression patterns of EbSRLK1 and EbSRLK3 genes were not closely related to SI of E. breviscapus. CONCLUSIONS: This work represents the first large-scale analysis of gene expression in the self-pollinated and cross-pollinated flowers of E. breviscapus. A larger number of notable genes potentially involved in SI responses showed differential expression, including genes playing crucial roles in cell-cell communication, signal transduction and the pollination process. We thus hypothesized that those genes showing differential expression and encoding critical regulators of SI responses, such as MLPK, ARC1, CaM, Exo70A1, MAP, SF21 and Nod, might affect SI responses in E. breviscapus. Taken together, our study provides a pool of SI-related genes in E. breviscapus and offers a valuable resource for elucidating the mechanisms of SI in Asteraceae.


Assuntos
Erigeron/genética , Erigeron/fisiologia , Genes de Plantas , Estudos de Associação Genética , Polinização/genética , Autofertilização/genética , Autoincompatibilidade em Angiospermas/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Ontologia Genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de RNA , Transdução de Sinais/genética
13.
Zhongguo Zhong Yao Za Zhi ; 40(2): 218-25, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-26080548

RESUMO

To offer the reference and method for salt damage in the cultivation of Marsdenia tenacissima, the seeds of M. tenacissima collected from Maguan city ( Yunnan province) were taken as the test materials to study the effects of different priming materials on improving germination and growth under high-level salt stress condition. Four different treatments, which were GA3, KNO3-KH2PO4, PEG-6000, NaCl, combined with ANOVA were applied to test the performance of germination energy, germination percentage, germination index, MDA, SOD, and CAT. The results showed that the seed germination was obviously inhibited under salt stress and the soaked seeds with different priming materials could alleviate the damage of salt stress. Under these treatments, the activities of SOD, CAT the content of soluble protein significantly increased. While the content of MDA significantly decreased. The maximum index was obtained when treated with 1.20% KNO3-KH2PO4, the germination percentage increased from 52.67% to 87.33% and the activity of SOD increased from 138.01 to 219.44 respectively. Comparing with the treatment of 1.20% KNO3-KH2PO4, the germination percentage of treating with 300 mg x L(-1) GA3 increased from 52.67% to 80.67%, while the activity of SOD increased from 138.01 to 444.61.


Assuntos
Germinação/fisiologia , Marsdenia/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Germinação/efeitos dos fármacos , Marsdenia/efeitos dos fármacos , Nitratos/farmacologia , Polietilenoglicóis/farmacologia , Compostos de Potássio/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Xantonas/farmacologia
14.
BMC Genomics ; 16: 159, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-25765814

RESUMO

BACKGROUND: P. vietnamensis var. fuscidiscus, called "Yesanqi" in Chinese, is a new variety of P. vietnamensis, which was first found in Jinping County, the southern part of Yunnan Province, China. Compared with other Panax plants, this species contains higher content of ocotillol-type saponin, majonoside R2. Despite the pharmacological importance of ocotillol-type saponins, little is known about their biosynthesis in plants. Hence, P. vietnamensis var. fuscidiscus is a suitable medicinal herbal plant species to study biosynthesis of ocotillol-type saponins. In addition, the available genomic information of this important herbal plant is lacking. RESULTS: To investigate the P. vietnamensis var. fuscidiscus transcriptome, Illumina HiSeq™ 2000 sequencing platform was employed. We produced 114,703,210 clean reads, assembled into 126,758 unigenes, with an average length of 1,304 bp and N50 of 2,108 bp. Among these 126,758 unigenes, 85,214 unigenes (67.23%) were annotated based on the information available from the public databases. The transcripts encoding the known enzymes involved in triterpenoid saponins biosynthesis were identified in our Illumina dataset. A full-length cDNA of three Squalene epoxidase (SE) genes were obtained using reverse transcription PCR (RT-PCR) and the expression patterns of ten unigenes were analyzed by reverse transcription quantitative real-time PCR (RT-qPCR). Furthermore, 15 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely to involve in triterpenoid saponins biosynthesis pathway were discovered from transcriptome sequencing of P. vietnamensis var. fuscidiscus. We further analyzed the data and found 21,320 simple sequence repeats (SSRs), 30 primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism in 13 P. vietnamensis var. fuscidiscus accessions. Meanwhile, five major triterpene saponins in roots of P. vietnamensis var. fuscidicus were determined using high performance liquid chromatography (HPLC) and evaporative light scattering detector (ELSD). CONCLUSIONS: The genomic resources generated from P. vietnamensis var. fuscidiscus provide new insights into the identification of putative genes involved in triterpenoid saponins biosynthesis pathway. This will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level. The SSR markers identified and developed in this study show genetic diversity for this important crop and will contribute to marker-assisted breeding for P. vietnamensis var. fuscidiscus.


Assuntos
Ginsenosídeos/biossíntese , Panax/genética , Transcriptoma , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Marcadores Genéticos , Ginsenosídeos/análise , Glicosiltransferases/genética , Repetições de Microssatélites , Anotação de Sequência Molecular , Estrutura Terciária de Proteína/genética , Análise de Sequência de RNA
15.
J Nat Med ; 69(1): 55-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25142501

RESUMO

Multi-element analysis of the medicinal plant Marsdenia tenacissima was used to develop a reliable method of tracing the geographical source of the samples. The concentrations of 27 elements in 128 samples from 4 provinces in China were analyzed by inductively coupled plasma-atomic emission spectroscopy. Pattern recognition techniques, viz. principal component analysis (PCA), cluster analysis (CA), stepwise linear discriminant analysis (SLDA) and k-nearest neighbor analysis (KNN), were used for this purpose. It was verified that 21 elements in the M. tenacissima samples from different regions showed significant differences (P < 0.05). The PCA explained 87.36 % of the variance with the first seven principal component variables, and a score plot produced from the largest three principal components showed that the source area of most samples could be correctly distinguished. The CA showed that samples were separated into three clusters. The SLDA produced an overall correct classification rate of 87.5 % and a cross-validation rate of 85.2 %. The KNN analysis performed ideally, with an average identification rate of 100 % for the training set and 93.33 % for the test set. These results laid the foundation for the application of multi-element analysis combined with pattern recognition techniques for tracing the geographical origin of samples of medicinal plants.


Assuntos
Marsdenia/química , China , Análise por Conglomerados , Análise Discriminante , Geografia , Plantas Medicinais/química , Análise de Componente Principal , Espectrofotometria Atômica
16.
Zhongguo Zhong Yao Za Zhi ; 39(17): 3311-5, 2014 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-25522618

RESUMO

In this paper, Fourier transform infrared spectroscopy fingerprint analysis of Marsdenia tenacissima samples was used to develop a reliable method of tracing the geographical origins. Forty-eight samples from four provinces of China were analyzed by FTIR. We analyzed and characterized the fingerprints in both the full spectrum peaks and characteristic peaks, then the principal component analysis and the cluster analysis were carried out. The results of fingerprint analysis, correlation analysis, principal component analysis and cluster analysis can identify the geographic origins correctly, which verified and supplemented each other; the identification results and the actual location showed a high degree of consistency, namely the lower the space distance, the greater the similarity of different samples. These results revealed the obvious superiority and practical value in comparison to the more tedious and time-consuming wet chemistry method normally used. Using appropriate metrology methods can trace the geographical source correctly. The M. tenacissima materials from the region of Maguan should be considered as genuine medicinal materials taking into account the good quality.


Assuntos
Medicamentos de Ervas Chinesas/análise , Marsdenia/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , China , Análise por Conglomerados , Medicamentos de Ervas Chinesas/classificação , Medicamentos de Ervas Chinesas/normas , Geografia , Marsdenia/classificação , Medicina Tradicional Chinesa , Análise de Componente Principal , Controle de Qualidade , Reprodutibilidade dos Testes
17.
Zhongguo Zhong Yao Za Zhi ; 39(13): 2478-83, 2014 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-25276967

RESUMO

To ascertain current situation of wild Marsdenia tenacissima resources in Honghe, Yunnan province, the distribution, habitat characteristic and resources reserves of M. tenacissima were surveyed based on interviews and investigation. The results showed that M. tenacissima was found in 7 counties such as Jinping, Mengzi etc, and distributed mainly on the mountainsides from 800 m to 1 200 m. And distribution was affected by many factors, such as light, heat, topography, soil, and vegetation. M. tenacissima grew well in distribution areas. M. tenacissima had averagely a weight of 2.8 kg per plant. Resources reserve of M. tenacissima in Honghe was estimated to 1 300 tons by now but it reduced rapidly in resent years, the wild resources reserve may not meet demand of market. Resources protection and wildlife tending would be conducted to deal with increasing medication requirements.


Assuntos
Marsdenia/crescimento & desenvolvimento , Plantas Medicinais/crescimento & desenvolvimento , China , Ecossistema , Marsdenia/classificação , Plantas Medicinais/classificação , Solo/química
18.
Zhongguo Zhong Yao Za Zhi ; 39(7): 1220-4, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-25011257

RESUMO

OBJECTIVE: The SSR information in the transcriptome of Erigeron breviscapus was analyzed in this study, in order to further develop new functional genes SSR markers laid a solid foundation. METHOD: SSR loci were searched in all of 52,060 unigenes by using est_timmer. Perl program and SSR primers were designed by Primer3. Furthermore, 36 pairs of primers were randomly selected for the polymorphism analysis on 13 Erigeron breviscapus plants collected from different places. RESULT: A total of 3639 SSRs were found in the transcriptome of Erigeron breviscapus, distributed in 3260 unigenes with the distribution frequency of 6.99%. Di-nucleotide repeat was the main type, account for as much as 34.41% of all SSRs, followed by mono-nucleotide (31.41%) and tri-nucleotide repeat motif (28.08%). The di-nucleotide repeat motifs of AT/AT and AC/GT were the predominant repeat types (28.71%). The tri-nucleotide repeat motifs of AAT/AT was the predominant repeat types (7.94%). For validation the availability of those SSR primers, we randomly selected 36 pairs of primers for PCR amplification. Among them, 34 pair primers (94.44%) produced clear and reproductive bands, 19 pair primers showed polymorphism (52.78%), and 13 Erigeron breviscapus plants were divided into 2 groups. CONCLUSION: There are numerous SSRs in Erigeron breviscapus transcriptome with high frequency and various types, this will provide abundant candidate molecular markers for genetic diversity study and genetic map in this plant.


Assuntos
Erigeron/genética , Repetições de Microssatélites , Polimorfismo Genético , Transcriptoma , China , Primers do DNA/genética , Erigeron/classificação , Variação Genética , Filogenia
19.
PLoS One ; 9(6): e100357, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24956277

RESUMO

BACKGROUND: Erigeron breviscapus (Vant.) Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable. PRINCIPAL FINDINGS: Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37%) were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors) were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR) were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40%) primer pairs were successfully amplified and 19 (52.78%) primer pairs exhibited polymorphisms. CONCLUSION: Using next generation sequencing (NGS) technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb.


Assuntos
Apigenina/biossíntese , Ácido Clorogênico/metabolismo , Erigeron/genética , Marcadores Genéticos/genética , Glucuronatos/biossíntese , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Plantas/genética , Transcriptoma , Erigeron/crescimento & desenvolvimento , Erigeron/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo Genético/genética
20.
Zhong Yao Cai ; 37(10): 1749-53, 2014 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-25895378

RESUMO

OBJECTIVE: The contents of total anthocyanins and total saponins as well as the composition of saponin monomers of Purple and Green Notoginseng Radix et Rhizoma were studied to compare the medicinal quality and commercial values. METHODS: Three-year-old Notoginseng Radix et Rhizoma was selected as the research materials. The contents of total anthocyanins and total saponins were determined by spectrophotometry. The compositions of saponin monomers were monitored by HPLC. The significance of content differences was determined by variance analysis. RESULTS: The contents of total anthocyanins and total saponins of Purple Notoginseng Radix et Rhizomawere about 204.85% and 33.86% higher than those of Green Notoginseng Radix et Rhizoma respectively. The Purple and Green Notoginseng Radix et Rhizoma both contained five saponin monomers whose contents were as follows: ginsenoside Rg1 > ginsenoside Rb1 > notoginsenoside R1 > ginsenoside Rd > ginsenoside Re. The contents of notoginsenoside R1, ginsenoside Rd and ginsenoside Re of Purple Notoginseng Radix et Rhizoma were about 16.03%, 10.83% and 5.39% higher than those of Green Notoginseng Radix et Rhizoma respectively. However, the contents of ginsenoside Rg1 and ginsenoside Rb1 of Green Notoginseng Radix et Rhizoma were about 0.93% and 3.33% higher than those of Purple Notoginseng Radix et Rhizoma respectively. With respect to Green Notoginseng Radix et Rhizoma, the increase of the total anthocyanins in Purple Notoginseng Radix et Rhizoma reached a significant level, but the increases of total saponins, notoginsenoside R1, ginsenoside Rd and ginsenoside Re and the decreases of ginsenoside Rg1 and ginsenoside Rb1 did not. CONCLUSION: The total anthocyanins accumulation in Notoginseng Radix et Rhizoma implies the content increases of the total saponins, notoginsenoside R1, ginsenoside Rd and ginsenoside Re, and the slight decreases of ginsenoside Rg1 and ginsenoside Rb1 contents; but the type and relative contents of saponin monomers remain unchanged. The medicinal quality and commercial value of Purple Notoginseng Radix et Rhizoma are higher than those of Green Notoginseng Radix et Rhizoma.


Assuntos
Antocianinas/química , Panax notoginseng/química , Raízes de Plantas/química , Rizoma/química , Saponinas/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas , Ginsenosídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA