Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 37(11): 5378-5393, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37589332

RESUMO

Epinodosin has shown antibacterial and antitumor biological characteristics in the documents. We found that Epinodosin has an effective inhibitory effect on esophageal squamous cell carcinoma (ESCC). However, the potential roles and mechanisms of Epinodosin in ESCC remain unclear. We performed many experiments to clarify the effect and mechanism of Epinodosin on ESCC. In this study, cell viability, invasion, migration, and apoptosis were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,-diphenytetrazoliumromide (MTT), Transwell, and flow cytometry. The differentially expressed miRNAs were screened through RNA transcriptome sequencing. The expression levels of miRNA-143-3p and some proteins were measured by real-time polymerase chain reaction (PCR) and Western blot. The anticancer effects of Epinodosin in vivo were determined by a nude mouse model. Epinodosin suppressed cell proliferation/invasion/migration and induced ESCC cell apoptosis. Epinodosin remarkably affected the protein expression of mitogen-activated protein kinase (MAPK) signaling pathway. The animal experiments demonstrated that Epinodosin could attenuate the growth of ESCC tumors in nude mice. The expression of p53, Bim, and Bax was upregulated, while that of Bcl-2 was downregulated in tumor tissues. In conclusion, Epinodosin suppresses cell viability/invasion/migration, while induces ESCC cell apoptosis by mediating miRNA-143-3p and Bcl-2, and can markedly attenuate the growth of ESCC tumors in nude mice.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Camundongos Nus , Neoplasias Esofágicas/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
2.
Phytomedicine ; 118: 154956, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499345

RESUMO

BACKGROUND: Smilagenin (SMI) is a lipid-soluble steroidal sapogenin, extracted from traditional Chinses medicinal herbs Radix Asparagi, which is extracted from the dry root of Asparagus cochinchinensis (Lour.) Merr. We previously found that SMI significantly increased brain-derived neurotrophic factor (BDNF) expression in Aß-intoxicated SH-SY5Y cells. METHODS: In this study, we performed behavioral tests to analyze cognitive function of WT and APP/PS1 mice treated with or without SMI, and found that SMI could significantly improve the learning and memory ability of APP/PS1 mice. Moreover, immunofluorescence and ELISA results showed that SMI pretreatment could effectively reduce the deposition of ß-amyloid plaques in the cortex and hippocampus of APP/PS1 mice (26 mg/kg/day for 60 days) and inhibit the secretion of Aß1-42 in N2a/APPswe cells (10 µM concentration for 24 hours). RESULTS: Mechanistically, SMI enhanced BDNF mRNA expression, elevated the global level of H3AC and H4AC, and increased the expression of P300 in AD models. Furthermore, chromatin immunoprecipitation results showed that SMI could increase the levels of H3AC and H4AC at the promoter of BDNF promoter Ⅱ and Ⅳ, indicating that SMI epigenetically regulates BDNF expression through HAT enhancement. To further verify the critical role of P300 by which SMI upregulated histone acetylation in BDNF, AD mice were treated with SMI and C646 simultaneously. Behavioral experiments showed that the improvement effects of SMI on cognitive impairment were abolished after P300 inhibition in APP/PS1 mice. CONCLUSIONS: Our research for the first time demonstrated that SMI showed neuroprotective effects by increasing the expression of P300 protein, thus upregulating histone acetylation levels in the promoter region of BDNF and promoting its transcription. Our findings provide an important theoretical basis for the treatment of Alzheimer's disease with SMI extracted from Asparagus cochinchinensis (Lour.) Merr.


Assuntos
Doença de Alzheimer , Neuroblastoma , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Histonas/metabolismo , Neuroblastoma/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo , Epigênese Genética , Camundongos Transgênicos , Modelos Animais de Doenças
3.
Zhen Ci Yan Jiu ; 48(4): 385-91, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37186204

RESUMO

OBJECTIVE: To investigate the location and anatomical structure of "Shaochong"(HT9), "Shaofu"(HT8), "Shenmen"(HT7), "Lingdao"(HT4) and "Shaohai"(HT3) in the rabbit's forelimb. METHODS: Sixteen rabbits (half male and half female) were used in the present study. By referring to the national standards on the location of acupoints in the human body and the literature about the location of acupoints in the rabbit, and by using the method of comparative anatomy, the location and needling operation of the Five-shu acupoints of Shaoyin Heart Meridian on the rabbit's forelimb were defined, and these acupoints were needled and CT three-dimensional reconstruction were conducted. Then, the rabbits were killed, and intravascular perfusion was performed, followed by inserting acupuncture needles into these five acupoints for observing the anatomical relationship between the inserted acupuncture needle and the structure of surrounding tissues. RESULTS: HT9 is located at the medial side of the little finger of forelimb, about 1 mm beside the nail root, and is adjacent to the superficial flexor tendon of the finger, the dorsal branches of the proper palmar digital artery and vein, and the endings of dorsal branch of palmar digital proper nerve of the ulnar nerve on the fifth finger side. HT8 is located at the palm side of the forelimb, horizontally parallel to the proximal end of the 5th metacarpophalangeal joint and between the 4th and 5th metacarpal bones, and is adjacent to the lumbricalis, the 4th and 5th interossei, and common palmar digital artery and vein and the palmar digital proper nerve of the ulnar nerve. HT7 is located at the medial margin of the extensor carpal tendon on the ulnar side, between the distal end of the ulna and the ulnar carpal bone, and is adjacent to the tendons of flexor carpi ulnaris and extensor carpi ulnaris, ulnar artery, ulnar vein and ulnar nerve. HT4 is located at the medial border of the ulnar flexor tendon, about 1.5 cun superior to HT7, and is adjacent to extensor carpi ulnaris, flexor carpi ulnaris, flexor digitorum superficialis, flexor digitorum profundus, ulnar artery, vein and ulnar nerve. HT3 is located at the depression, medial to the condyle of humerus when the elbow is bent at 90°, its neighbor structure is composed of pronator teres, biceps brachii, brachial artery and vein, radial collateral artery, radial collateral vein, medial antebrachial cutaneous nerve and median nerve. CONCLUSION: In the rabbit, there is a close relationship between HT9, HT8, HT7, HT4 and HT3 regions and brachial vascular and its branches, cephalic vein and its branches, medial antebrachial cutaneous nerve, median nerve and ulnar nerve, which is the morphological basis of the Five-shu acupoints of Shaoyin Heart Meridian for treating some related clinical disorders.


Assuntos
Meridianos , Animais , Coelhos , Masculino , Feminino , Humanos , Pontos de Acupuntura , Imageamento Tridimensional , Membro Anterior/diagnóstico por imagem , Membro Anterior/anatomia & histologia , Tomografia Computadorizada por Raios X
5.
Front Cell Neurosci ; 13: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804756

RESUMO

Current therapies for Parkinson's disease (PD) only offer limited symptomatic alleviation but fail to hamper the progress of the disease. Thus, it is imperative to establish new approaches aiming at protecting or reversing neurodegeneration in PD. Recent work elucidates whether smilagenin (abbreviated SMI), a steroidal sapogenin from traditional Chinese medicinal herbs, can take neuroprotective effect on dopaminergic neurons in a chronic model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) conjuncted with probenecid mice. We reported for the first time that SMI significantly improved the locomotor ability of chronic MPTP/probenecid-lesioned mice. SMI increased the tyrosine hydroxylase (TH) positive and Nissl positive neuron number in the substantia nigra pars compacta (SNpc), augmented striatal DA and its metabolites concentration and elevated striatal dopamine transporter density (DAT). In addition, dopamine receptor D2R not D1R was down-regulated by MPTP/probenecid and slightly raised by SMI prevention. What's more, we discovered that SMI markedly elevated striatal glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) protein levels in SMI prevented mice. And we found that SMI increased GDNF and BDNF mRNA level by promoting CREB phosphorylation in 1-methyl-4-phenylpyridimium (MPP+) treated SH-SY5Y cells. The results illustrated that SMI could prevent the impairment of dopaminergic neurons in chronic MPTP/probenecid-induced mouse model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA