Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Res ; 1663: 151-160, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274609

RESUMO

ß-Amyloid (Aß) accumulation in the brain is the major pathophysiology of Alzheimer disease (AD). Hypertension is a risk factor for AD by promoting Aß deposition. Traditional Chinese medicinal compound tongxinluo (TXL) can improve blood circulation and endothelium-dependent vasodilation. This study investigates the effects of TXL on cognition and Aß using spontaneously hypertensive rats (SHRs). TXL was intragastrically administered to SHRs at low-dose, mid-dose and high-dose for 15, 30 or 60days. Cognition was evaluated with a Morris Water Maze (MWM). Aß in the brain was detected by western blot, ELISA and Thioflavin-S staining. Western blot and RT-PCR were employed to exam the expression of receptor for advanced glycation end products (RAGE), low-density lipoprotein receptor-related protein-1 (LRP-1) and amyloid precursor protein (APP). After TXL treatment for 60days, compared with the vehicle, the number of crossed platform and the time spent in the target quadrant increased in parallel with the increasing length of treatment in MWM. Moreover, the Aß in the hippocampus significantly decreased compared to the vehicle group, both in western blot and ELISA. Additionally, TXL reduced RAGE expression in a dose- and time-depended manner, but LRP-1 expression had no difference between TXL groups and vehicle groups. Furthermore, the ß-secretase expression was significantly decreased compared to the vehicle group, but APP expression had no difference. In conclusion, TXL improved cognition and decreased Aß in SHRs in a dose- and time-dependent manner, the underlying mechanism may involved in inhibiting RAGE and ß-secretase expression.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Cognição/efeitos dos fármacos , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Hipocampo/metabolismo , Hipertensão/etiologia , Hipertensão/terapia , Masculino , Medicina Tradicional Chinesa , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
2.
Neurochem Int ; 61(2): 227-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561406

RESUMO

The characteristic pathological change of Alzheimer's disease (AD) include deposits of ß-amyloid protein (Aß) in brain, neurofibrillary tangles (NFTs), as well as a few neuronal loss. Evidence shows that Aß causes calcium influx and induces the cleavage of p35 into p25. Furthermore, the binding of p25 to cyclin-dependent kinase 5 (Cdk5) constitutively activates Cdk5. The p25/Cdk5 complex then hyperphosphorylates tau. Tanshinone IIA (tanIIA), a natural product extracted from Chinese herbal medicine Salvia miltiorrhiza BUNGE, has been reported to exert antioxidative activity. However, its neuroprotective activity remains unclear. The present study determined whether tanIIA protects neurons against Aß(25-35)-induced cytotoxicity and detected the association of this protective effect with calpain and the p35/Cdk5 pathway. The results showed that tanIIA protected neurons against the neurotoxicity of Aß(25-35), increased the viability of neurons, decreased expression of phosphorylated tau in neurons induced by Aß(25-35), improved the impairment of the cell ultrastructure (such as nuclear condensation and fragmentation, and neurofibril collapse). Further more, we found that tanIIA maintained the normal expression of p35 on peripheral membranes, and decreased p25 expression in the cytoplasm. TanIIA also inhibited the translocation of Cdk5 from the nucleus into the cytoplasm of primary neurons induced by Aß(25-35). These data suggested that tanIIA possessed neuroprotective action and the protection may involve in calpain and the p35/Cdk5 pathway.


Assuntos
Abietanos/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Calpaína/fisiologia , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/toxicidade , Fosfotransferases/fisiologia , Animais , Western Blotting , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/ultraestrutura , Citoplasma/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Fosforilação , Gravidez , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Sais de Tetrazólio , Tiazóis , Proteínas tau/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA