Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Colloid Interface Sci ; 621: 77-90, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35452931

RESUMO

Single treatment often faces the problem that it cannot completely eradicate tumor and inhibit the tumor metastasis. In order to overcome this shortcoming, multi-modal tumor treatment has attracted widespread attention. In the present article, based on ascorbyl palmitate (PA) and l-arginine (l-Arg), a multifunctional nanocarrier is designed for synergetic treatment of tumor with photothermal and nitric oxide (NO) gas therapy. Firstly, PA and l-Arg were self-assembled to form novel functional micelles, PL, with high biosafety using electrostatic interaction and hydrogen bonding. The functional micelles could self-catalyze to produce NO at the tumor site. Then, Ag2S quantum dots having fluorescence imaging and photothermal properties were encapsulated to obtain the nanocarrier, A@PL. The results show that A@PL had a hydrated size of around 78 nm and presented good stability within 30 d. Moreover, in vitro studies indicate that it was efficient with regards to NO self-generating capacity, whereas the photothermal conversion efficiency was as high as 34% under near-infrared light irradiation. The cytotoxicity results show that, when the concentration of A@PL was as high as 2 mM, the survival rate of 3 T3 cells was still 78.23%, proving that the probe has good safety characteristics. Fluorescence imaging results show that its maximum enrichment can be achieved at the tumor site after tail vein injection for 3 h, and out of the body after 24 h, indicating good internal circulation. The in vivo studies show that the rate of inhibition of tumor using the nanocarrier was as high as 98%, and almost overcame the problem of tumor recurrence caused by single treatment, thus presenting a significant tumor treatment effect. This new multifunctional nanocarrier with self-catalytic production of NO provides a new idea for the efficient treatment of tumors.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Micelas , Neoplasias/terapia , Óxido Nítrico , Imagem Óptica/métodos , Fototerapia/métodos
2.
Int J Biol Macromol ; 208: 486-493, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35304200

RESUMO

A gelling strategy for HP was proposed in this study, ammonium sulfate (AS) as a co-solute could induce the gelling of HP in acidic environment. The solubility and Zeta potential of HP dramatically decreased in AS solution, which indicated AS could promote the aggregation of HP. The rheological results confirmed the gelling of HP (G' > G″) with AS: 25-30 wt% and pH ≤ 3.0, and the gel strength is mainly depended on HP rather than AS concentration. Smaller AS crystals (SEM) and reduced T2 values (LF-NMR) were observed in HP gels, suggested the gel network of HP could limit the migration of AS and water. Finally, it was found that the release process of NH4+ in HP + AS gel was lagged behind that of pure AS, which verified the potential of HP + AS gel in the field of sustained-release fertilizers.


Assuntos
Pectinas , Preparações de Ação Retardada , Géis/química , Pectinas/química , Reologia , Solubilidade
3.
Food Chem ; 375: 131806, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933235

RESUMO

Moderate alkali de-esterification can change the physicochemical characteristics and thus the functional properties of high methoxyl pectin (HMP). The results revealed that de-esterification could increase negative charges (Zeta potential from -21 to -31 mV), decrease molecular weight (from 448 to 136 kDa) and apparent viscosity of HMP. Homogalacturonan (HG) content decreased (from 62% to 49%) while rhamnogalacturonan Ⅰ (RG-Ⅰ) content increased (from 32% to 46%) after de-esterification. The group characteristics of HMP with different degree of esterification (DE) were similar and no obvious impact was made on degree of crystallinity by alkali de-esterification. A conformation transition of HMP molecule implied by Congo red test were occurred as the DE decreased. With the decrease of DE, the molecular structure of HMP became shorter and smaller, and the entanglement was weaker. The de-esterification caused slight decrease of thermal stability. Alkali de-esterification would weaken the gel property and the emulsifying ability of HMP.


Assuntos
Pectinas , Esterificação , Peso Molecular , Viscosidade
4.
Int J Biol Macromol ; 154: 788-794, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32194115

RESUMO

Bismuth-contained therapies are effective in treating gastric ulcer and eliminating Helicobacter pylori (Hp). Anion polysaccharides ligand could reduce the intake of bismuth, and enhance drug efficacy of bismuth compounds. In this study, pectin-bismuth (PB) was prepared and the changes of PB structure in acidic environment were reported for the first time. The structure of PB was characterized by FT-IR, XRD, and TGA, which suggested that combined with bismuth could alter the crystal structure of pectin. XPS confirmed the ionic binding of Bi3+ with carboxyl groups of pectin. The aggregating of PB with different pH level were also investigated, and the influence of pH on PB structure were observed by SEM. Results showed that PB has much larger volume of flocculation in acidic environment compared with bismuth nitrate. Additionally, apparent shear stress (τa) of PB suspension was evaluated. These results revealed the structural characteristics and acid-induced aggregation of pectin-bismuth, and bismuth could aggregate in acidic solution with the gelation of pectin.


Assuntos
Bismuto/química , Pectinas/química , Ácidos/química , Citrus/metabolismo , Concentração de Íons de Hidrogênio , Estrutura Molecular
5.
Theranostics ; 9(25): 7666-7679, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695793

RESUMO

Despite burgeoning development of nanoplatform made in the past few years, it remains a challenge to produce drug nanocarrier that enables requested on/off drug release. Thus, this study aimed to develop an ideal near-infrared light-triggered smart nanocarrier for targeted imaging-guided treatment of cancer that tactfully integrated photothermal therapy with chemotherapy to accurately control drug release time and dosage. Methods: This delivery system was composed of Ag2S QD coating with dendritic mesoporous silica (DMSN), which acted as nanocarrier of doxorubicin localized inside pores. To provide the nanocarrier with controlled release capability, a polypeptide-engineered that structure was reversible to photothermal effect of Ag2S QD, was covalently grafted to the external surface of drug-loaded DMSN. Results: This nanocarrier with the size of 40~60 nm had satisfactory biocompatibility and photothermal conversion efficiency up to 28.35%. Due to acidity-triggered charge reversal of polypeptide, which significantly extended circulation time and improved targeting ability, fluorescence and photoacoustic signals were still obvious at tumor site post-24 h by tail vein injection and chemo-photothermal synergistic therapy obviously enhanced antitumor efficacy. Mild PTT with multiple short-term exposures not only reduced the side effect of overdose drug but also avoided skin damage caused by long-term irradiation. Conclusion: By adjusting irradiation time and on/off cycle, multiple small amount local drug release reduced the side effect of overdose drug and skin damage. This novel approach provided an ideal near-infrared light-triggered nanocarrier with accurate control of area, time, and especially dosage.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Peptídeos/química , Animais , Linhagem Celular Tumoral , Terapia Combinada/métodos , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Fluorescência , Células HeLa , Humanos , Raios Infravermelhos , Células MCF-7 , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Dióxido de Silício/química
6.
J Agric Food Chem ; 67(39): 10904-10912, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31508953

RESUMO

High-order multiple emulsions are of great interest in both fundamental research and industrial applications as vehicles for their encapsulation capability of actives. In this work, we report a hierarchically multicompartmental highly stable triple emulsion by emulsifying and assembling of natural Quillaja saponin. Water-in-oil-in-(oil-in-water) (W2/O2/(O1/W1)) triple emulsion indicates that the compartmented system consisted of surfaced saponin-coated nanodroplets (SNDs) and dispersed oil globules, which in turn contained smaller aqueous droplets. The effects of formulation parameters, including lipophilic emulsifier content, oil fraction, and SND concentration, on the formation of multiple emulsions were systematically investigated. The assembly into fibrillar network of SNDs at the outer oil-water interface effectively protected the triple emulsion droplets against flocculation and coalescence, and strongly prevented the osmotic-driven water diffusion between the internal water droplets and the external water phase, thus contributing to superior stability during 180 days storage. All of these characteristics make the multicompartmentalized emulsions suitable to co-encapsulate a hydrophilic bioactive (gardenia blue) and two hydrophobic bioactives (eapsanthin and curcumin) in a single emulsion droplet hierarchically for the segregation and protection of multiple cargos. This approach offers a promising route toward accessing the next generation of functional deliveries and encapsulation strategies.


Assuntos
Curcumina/química , Sistemas de Liberação de Medicamentos/métodos , Extratos Vegetais/química , Quillaja/química , Saponinas/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Emulsificantes/química , Emulsões/química , Glucosídeos/química , Óleos/química , Tamanho da Partícula , Água/química
7.
J Agric Food Chem ; 67(35): 9719-9726, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31398015

RESUMO

Pickering high internal phase emulsions (HIPEs) are normally highly concentrated emulsions stabilized by colloidal particles with a minimum internal phase volume fraction of 0.74. They have received considerable attention in many fields, including pharmaceuticals, tissue engineering, foods, and personal care products. The aim of this perspective is to update the current knowledge on the field of protein-based Pickering HIPEs, emphasizing those aspects that need to be explored and clarified. Research progress in constructing HIPEs by protein-type colloid particles and promising research trends in basic research and potential applications were highlighted. Promising studies in this field include (1) clarifying bioavailability and evolution of activity of active ingredients in Pickering HIPEs by oral administration, (2) constructing a Pickering interfacial catalysis platform using protein colloidal particles, and (3) expanding the emerging applications of Pickering HIPEs in fields, such as partially hydrogenated oil replacers, probiotic encapsulation, and the template for porous materials.


Assuntos
Suplementos Nutricionais/análise , Emulsões/química , Proteínas/química , Coloides/química , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Nanopartículas/química , Tamanho da Partícula , Porosidade
8.
Food Funct ; 10(8): 4522-4532, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31355399

RESUMO

Delivery systems with multicompartmental structures that allow simultaneous delivery of several cargos are of great interest in both fundamental research and industrial applications. Here, we report a facile and easily scalable approach to fabricate multi-compartmentalized microdroplets for achieving programmed release of hydrophobic cargoes. Well-dispersed nanodroplets stabilized by natural Quillaja saponin served as an effective colloid stabilizer for fabricating microscale emulsion droplets with multicompartment architectures comprising many nanoscale droplets as a shell and single microscale core. Control of the number of nanodroplets allows accurate manipulation of the interface permeability for flexible and controllable release of volatile compounds (e.g., 2,3-butanedione, cis-3-hexen-1-ol, ethyl butyrate, d-limonene). More interestingly, the multicompartment microdroplets exhibited a higher flexibility for programmed release of different volatile compounds, as well as curcumin, during in vitro digestion by introducing cargos into the shell subcompartments or core microcompartment. The promising results highlight the power of this multi-compartmentalized system toward accessing a powerful platform for functional cargo delivery strategies.


Assuntos
Curcumina/química , Sistemas de Liberação de Medicamentos/métodos , Extratos Vegetais/química , Quillaja/química , Saponinas/química , Digestão , Sistemas de Liberação de Medicamentos/instrumentação , Emulsões/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
9.
J Agric Food Chem ; 67(12): 3423-3431, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30835109

RESUMO

Pickering high internal-phase emulsions (HIPEs) and porous materials derived from the Pickering HIPEs have received increased attention in various research fields. Nevertheless, nondegradable inorganic and synthetic stabilizers present toxicity risks, thus greatly limiting their wider applications. In this work, we successfully developed nontoxic porous materials through the Pickering HIPE-templating process without chemical reactions. The obtained porous materials exhibited appreciable absorption capacity to corn oil and reached the state of saturated absorption within 3 min. The Pickering HIPE templates were stabilized by gliadin-chitosan complex particles (GCCPs), in which the volume fraction of the dispersed phase (90%) was the highest of all reported food-grade-particle-stabilized Pickering HIPEs so far, further contributing to the interconnected pore structure and high porosity (>90%) of porous materials. The interfacial particle barrier (Pickering mechanism) and three-dimensional network formed by the GCCPs in the continuous phase play crucial roles in stabilization of HIPEs with viscoelastic and self-supporting attributes and also facilitate the development of porous materials with designed pore structure. These materials, with favorable biocompatibility and biodegradability, possess excellent application prospects in foods, pharmaceuticals, materials, environmental applications, and so on.


Assuntos
Quitosana/química , Gliadina/química , Emulsões/química , Tamanho da Partícula , Óleos de Plantas/química , Porosidade , Zea mays/química
10.
Food Chem ; 285: 414-422, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797365

RESUMO

Buckwheat constitutes a good source of bioactive components. A dry fractionation of surface abrasion for polyphenol-enriched protein combined with hydrothermal treatment was evaluated as an alternative to conventional wet extraction from tartary buckwheat (Fagopyrum esculentum Moench). The protein contents and the total polyphenol contents of both free and bound polyphenol gradually decreased in the order from the outer to the inner fractions. Polyphenol-enriched buckwheat protein flour was successfully enrichment with a maximum polyphenol content of 55 mg/g. Moreover, starch digestibility and polyphenols bioaccessibility of the buckwheat protein were increased with hydrothermal treatment time, while protein digestibility decreased slightly. Besides, most of the aroma compounds increased during the hydrothermal treatment. The assessment results demonstrate that the sustainability dry surface abrasion process in combination with hydrothermal treatment should be encouraged in processing functional protein fractions and improving both qualities of end use products and health benefits.


Assuntos
Fracionamento Químico/métodos , Fagopyrum/química , Manipulação de Alimentos/métodos , Proteínas de Plantas/química , Polifenóis/química , Proteínas Alimentares/química , Farinha , Manipulação de Alimentos/instrumentação , Alimentos Fortificados , Proteínas de Plantas/farmacocinética , Polifenóis/análise , Polifenóis/farmacocinética , Amido
11.
J Agric Food Chem ; 67(9): 2637-2646, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30721052

RESUMO

A new facile route was reported to use the natural triterpene Quillaja saponin (QS)-stabilized orange emulsions as a template for the development of flavor oil powders and oleogels achieved by the tunable oil fraction and drying mode. A fibrosis network interfacial film from self-assembly of QS at the oil-water interface possibility contributed to the fabrication of stable emulsion precursors and subsequent oil powder and oleogels by packing oil droplets in the network structure. An oil powder containing as high as 93 wt % orange oil was obtained by spray drying, showing excellent stability, flowability, and reconstitution ability. Upon the medium water removal rate of freeze drying, porous structured solid products followed by oleogels by a simple shearing can be formed. Upon oven drying, a translucent oleogel with high oil loading of 98.2 wt % was obtained from the high internal phase emulsion template. The resulting oleogels showed tunable rheological and texture properties, thixotropic recovery by modulating the oil fraction and water evaporation rate, and reversibility to reconstituted emulsions. Structuring liquid oil into solid materials by simply drying the continuous water from solely QS-based emulsions is very encouraging and provides new insights into various functional applications in the fields of foods, pharmaceuticals, cosmetics, and agriculture.


Assuntos
Emulsões/química , Óleos de Plantas/química , Quillaja/química , Saponinas/química , Triterpenos/química , Dessecação/métodos , Tecnologia de Alimentos/métodos , Compostos Orgânicos/química , Pós/química , Reologia
12.
J Mater Chem B ; 7(15): 2484-2492, 2019 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32255125

RESUMO

Ag2S quantum dots have received extensive attention as theranostic agents for second near-infrared (NIR-II) fluorescence and photoacoustic dual-mode imaging, and photothermal therapy. However, it is still greatly challenging to synthesize Ag2S quantum dots using aqueous synthesis. In this study, genetically engineered polypeptide-capped Ag2S quantum dots were successfully synthesized. Three cysteines were integrated to the C-terminal and N-terminal of RGDPC10A to enhance the stability and brightness of the synthesized Ag2S quantum dots. The RGDPC10A-capped Ag2S quantum dots exhibited excellent stability, outstanding resistance to photobleaching, and a superior quantum yield of up to 3.78% in the NIR-II biological window. The in vitro and in vivo results showed that the RGDPC10A-capped Ag2S quantum dots possessed typical NIR-II fluorescence, photoacoustic imaging, and photothermal therapeutic effectiveness against tumors. Moreover, the results of toxicity assays suggested that the RGDPC10A-capped Ag2S quantum dots have negligible long-term toxicity. These findings open up the possibility for synthesizing theranostic agents by using this aqueous method.


Assuntos
Imagem Óptica/métodos , Peptídeos/química , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Pontos Quânticos/química , Compostos de Prata/química , Água/química , Sequência de Aminoácidos , Animais , Técnicas de Química Sintética , Engenharia Genética , Células HeLa , Humanos , Raios Infravermelhos , Camundongos , Peptídeos/genética
13.
J Sci Food Agric ; 99(6): 3176-3185, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30548612

RESUMO

BACKGROUND: During the last decade buckwheat was reported to have positive health effects. The present study investigated a high-polyphenol buckwheat protein (Fagopyrum esculentum Moench) prepared by enzyme-assisted processing, together with its physicochemical properties, in vitro digestibility, and antioxidant activity. RESULTS: Buckwheat protein prepared from the synergistic enzymatic action of α-amylase and amyloglucosidase (E-BWP) had much higher polyphenol content than buckwheat protein prepared by isoelectric precipitation (I-BWP) or salt extraction (S-BWP). Rutin degraded during the process, giving quercetin. The protein constituents and amino acid composition of E-BWP were very similar to those of native buckwheat and were able to meet the WHO/FAO requirements for both children and adults. During in vitro digestion, E-BWP showed anti-digestive behavior with a nitrogen release that was lower than that of I-BWP or S-BWP. The positive effect of the polyphenol content of E-BWP resulted in a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) content and greater reducing activity. CONCLUSION: Buckwheat protein with high polyphenol content was successfully developed by enzyme-assisted processing. It had a well-balanced amino acid profile, antidigestive behavior, and high antioxidant activities. The results suggest that enzyme-assisted processing is promising in the production of polyphenol-enriched cereal protein, contributing higher functionality with good nutritional and antioxidant properties. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Fagopyrum/química , Fagopyrum/metabolismo , Glucana 1,4-alfa-Glucosidase/química , Proteínas de Plantas/química , Polifenóis/análise , alfa-Amilases/química , Antioxidantes/metabolismo , Biocatálise , Digestão , Manipulação de Alimentos , Humanos , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Sementes/química , Sementes/metabolismo
14.
Theranostics ; 8(20): 5662-5675, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555572

RESUMO

Currently, a large number of anti-tumor drug delivery systems have been widely used in cancer therapy. However, due to the molecular complexity and multidrug resistance of tumors, monotherapies remain suboptimal. Thus, this study aimed to develop a multifunctional theranostic nanoplatform for effective cancer therapy. Methods: Folic acid-modified silver sulfide@mesoporous silica core-shell nanoparticle was first modified with desthiobiotin (db) on the surface, then doxorubicin (DOX) was loaded into pore. Avidin was employed as "gatekeeper" to prevent leakage of DOX via desthiobiotin-avidin interaction. Db-modified survivin antisense oligonucleotide (db-DNA) which could inhibit survivin expression was then grafted on avidin at the outer layer of nanoparticle. DOX release and db-DNA dissociation were simultaneously triggered by overexpressing biotin in cancer cells, then combining PTT from Ag2S QD to inhibit tumor growth. Results: This nanoprobe had satisfactory stability and photothermal conversion efficiency up to 33.86% which was suitable for PTT. Due to the good targeting ability and fluorescent anti-bleaching, its signal still existed at the tumor site after tail vein injection of probe into HeLa tumor-bearing nude mice for 48 h. In vitro and in vivo antitumor experiments both demonstrated that drug, gene and photothermal synergistic therapy significantly enhanced antitumor efficacy with minimal systemic toxicity. Conclusion: Our findings demonstrate that this novel nanoplatform for targeted image-guided treatment of tumor and tactfully integrated chemotherapy, photothermal therapy (PTT) and gene therapy might provide an insight for cancer theranostics.


Assuntos
Tratamento Farmacológico/métodos , Terapia Genética/métodos , Hipertermia Induzida/métodos , Terapia de Alvo Molecular/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Fototerapia/métodos , Animais , Antineoplásicos/administração & dosagem , Biotina/administração & dosagem , Biotina/análogos & derivados , Terapia Combinada/métodos , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Camundongos Nus , Nanopartículas/administração & dosagem , Nanopartículas/química , Oligonucleotídeos Antissenso/administração & dosagem , Radioterapia Guiada por Imagem/métodos , Nanomedicina Teranóstica/métodos , Resultado do Tratamento
15.
J Agric Food Chem ; 66(42): 11113-11123, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30272970

RESUMO

Diets containing partially hydrogenated oils (PHOs) expose the human body to trans fatty acids, thus endangering cardiovascular health. Pickering high internal phase emulsions (HIPEs) is a promising alternative of PHOs. This work attempted to construct stable Pickering HIPEs by engineering interface architecture through manipulating the interfacial, self-assembly, and packing behavior of zein particles using the interaction between protein and pectin. Partially wettable zein/pectin hybrid particles (ZPHPs) with three-phase contact angles ranging from 84° to 87° were developed successfully. ZPHPs were irreversibly anchored at the oil-water interface, resulting in robust and ordered interfacial structure, evidenced by the combination of LB-SEM and CLSM. This situation helped to hold a percolating 3D oil droplet network, which facilitated the formation of Pickering HIPEs with viscoelasticity, excellent thixotropy (>91.0%), and storage stability. Curcumin in HIPEs was well protected from UV-induced degradation and endowed HIPEs with ideal oxidant stability. Fabricated Pickering HIPEs possess a charming application prospect in foods and the pharmaceutical industry.


Assuntos
Nanopartículas/química , Pectinas/química , Zeína/química , Curcumina/química , Emulsões/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Óleos/química , Oxirredução , Tamanho da Partícula , Ligação Proteica , Estabilidade Proteica , Propriedades de Superfície , Ácidos Graxos trans/química , Água , Molhabilidade
16.
J Nanobiotechnology ; 16(1): 42, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673352

RESUMO

BACKGROUND: Ag2S has the characteristics of conventional quantum dot such as broad excitation spectrum, narrow emission spectrum, long fluorescence lifetime, strong anti-bleaching ability, and other optical properties. Moreover, since its fluorescence emission is located in the NIR-II region, has stronger penetrating ability for tissue. Ag2S quantum dot has strong absorption during the visible and NIR regions, it has good photothermal and photoacoustic response under certain wavelength excitation. RESULTS: 200 nm aqueous probe Ag2S@DSPE-PEG2000-FA (Ag2S@DP-FA) with good dispersibility and stability was prepared by coating hydrophobic Ag2S with the mixture of folic acid (FA) modified DSPE-PEG2000 (DP) and other polymers, it was found the probe had good fluorescent, photoacoustic and photothermal responses, and a low cell cytotoxicity at 50 µg/mL Ag concentration. Blood biochemical analysis, liver enzyme and tissue histopathological test showed that no significant influence was observed on blood and organs within 15 days after injection of the probe. In vivo and in vitro fluorescence and photoacoustic imaging of the probe further demonstrated that the Ag2S@DP-FA probe had good active targeting ability for tumor. In vivo and in vitro photothermal therapy experiments confirmed that the probe also had good ability of killing tumor by photothermal. CONCLUSIONS: Ag2S@DP-FA was a safe, integrated diagnosis and treatment probe with multi-mode imaging, photothermal therapy and active targeting ability, which had a great application prospect in the early diagnosis and treatment of tumor.


Assuntos
Sondas Moleculares , Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos , Pontos Quânticos , Compostos de Prata , Células A549 , Animais , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sondas Moleculares/química , Sondas Moleculares/toxicidade , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/toxicidade , Fototerapia , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Compostos de Prata/química , Compostos de Prata/toxicidade
17.
J Agric Food Chem ; 66(16): 4200-4207, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29624058

RESUMO

Slowing the digestion of starch is one of the dominant concerns in the food industry. A colloidal structural modification strategy for solving this problem was proposed in this work. Due to thermodynamic incompatibility between two biopolymers, water/water emulsion of waxy corn starch (WCS) droplets dispersed in a continuous aqueous guar gum (GG) was prepared, and zein particles (ZPs), obtained by antisolvent precipitation and pectin modification, were used as stabilizer. As the ratio of zein to pectin in the particles was 1:1, their wetting properties in the two polysaccharides were similar, which made them accumulate at the interface and cover the WCS-rich droplets. The analysis of digestibility curves indicated that a rapid (rate constant k1: 0.145 min-1) and a slow phase ( k2: 0.022 min-1) existed during WCS digestion. However, only one slow phase ( k2: 0.019 min-1) was found in the WCS/GG emulsion, suggesting that this structure was effective in slowing starch digestion.


Assuntos
Pectinas/química , Amido/química , Água/química , Zeína/química , Digestão , Emulsões/química , Cinética , Tamanho da Partícula
18.
Food Funct ; 8(2): 823-831, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28124036

RESUMO

Herein, we report novel high internal phase emulsions and transparent oleogels that exhibit a hierarchical configuration by manipulating the spatial assembly of a natural small molecular-weight quillaja saponin for color performance. Quillaja saponin (QS) is a natural triterpenoid bidesmosidic from the soapbark tree (Quillaja saponaria Molina). Fairly monodispersed QS-coated nanodroplets (∼154 nm) were prepared using the ultrasonic emulsification strategy, and then used as block stabilizers for the fabrication of stable oil-in-water high internal phase emulsions (HIPEs, ϕ = 0.75). The resulting HIPEs can be easily converted into transparent oleogels with a very high oil loading (99.7%) through oven drying (70 °C). The jelly-like oleogels exhibit weak elastic, shear thinning behavior, good thixotropic recovery, and thermostabilization properties, which might be provided by the percolating 3D network of QS fibrils in the oil phase. We spatially tuned the color performance of the HIPEs and subsequent oleogels by locating the compositions of food colorants in different sections of their hierarchal architecture. The design and construction of hierarchical HIPEs and oleogels provide a promising new route for multitask functional delivery applications in various fields including food, cosmetics, and medical applications.


Assuntos
Corantes de Alimentos/química , Extratos Vegetais/química , Saponinas de Quilaia/química , Quillaja/química , Cor , Emulsões/química , Nanopartículas/química , Compostos Orgânicos/química
19.
Food Funct ; 7(9): 3694-702, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27501908

RESUMO

Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with ß-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.


Assuntos
Antioxidantes/análise , Emulsões/química , Ácidos Graxos Ômega-3/química , Óleos/química , Fitosteróis/química , Paladar , Estabilidade de Medicamentos , Alimentos Fortificados , Odorantes/análise , Fenilpropionatos , Pós , Saponinas de Quilaia , Sitosteroides
20.
Food Chem ; 211: 836-44, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27283703

RESUMO

Structuring edible oils into solid lipids without saturated and trans fats has attracted increasing interest due to the benefits for human health and promises potential as novel delivery systems for lipophilic bioactive ingredients. The study shows that a zein stabilized high (ϕ=0.6) oil-in-glycerol (O/G) emulgels enriched with ß-carotene was performed, by a facile one-step homogenization. Rheological measurements and morphologies observations indicated that increasing ß-carotene resulted in a progressive strengthening of gel-like network and improving their spreadability in the O/G emulgels stabilized by zein, which was closely related to the hydrophobic interaction of zein and ß-carotene. The formation of emulgels significantly enhanced the UV photo-stability of ß-carotene, and more than 88% of ß-carotene was retained in 64h storage under UV exposure, and consequently retarded oil oxidation while storage. Further, cakes prepared using zein-based O/G emulgels as a margarine alternative showed comparable functionalities (texture and sensory attributes) to the standard cake.


Assuntos
Géis/química , Glicerol/química , Margarina , Óleos de Plantas/química , Zeína/química , beta Caroteno/química , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA