Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(11): 8891-8899, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426345

RESUMO

Mid-ultraviolet light (290-320 nm) can promote human vitamin D synthesis, which helps in the prevention and treatment of rickets and cartilage disease. For people who lack sufficient ultraviolet radiation all year round, it is significant to supplement the ultraviolet component in daily lighting sources. However, there are few luminous materials showing a combination of mid-ultraviolet light and white light emission on the market. Here, we designed a new material, Y2Sr(Ga1-yAly)4SiO12:xPr3+ (YSGAS:xPr3+), which achieves dual emission of 320 nm ultraviolet and white light from a single substrate with a single doped phosphor. Without Al3+ ions, the emission intensity of the Y2SrGa4SiO12:xPr3+ phosphor shows a contribution-dependent relationship, and concentration quenching due to exchange interaction. The crystal field environment was regulated by partially replacing Ga3+ ions with Al3+ ions. After introducing Al3+, YSGAS:xPr3+ phosphors exhibit dual ultraviolet emission (320 nm) and visible light emission. The emission color of YSGAS:xPr3+ can be adjusted by changing the Al3+ concentration, and Y2Sr(Ga0.6Al0.4)4SiO12:1%Pr3+ emits both ultraviolet light and white light. The LED device prepared by using the YSGAS:Pr3+ phosphor and chips shows a color temperature of 4858 K and appropriate CIE coordinates of (0.3474, 0.3390), indicating wide application prospects in the field of "health lighting" for particular populations.

2.
Fitoterapia ; 174: 105874, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417684

RESUMO

Five new sesquiterpenoids, dictamtrinorguaianols E and F (1-2), and dictameudesmnosides F, G, and H (3-5), along with seven known sesquiterpenoids (6-12) were isolated from Dictamnus dasycarpus Turcz. The structures of all new compounds were characterized by spectroscopic methods, including UV, IR, HR-ESI-MS, and 1D and 2D NMR. The In-vitro anti-proliferative activities of all the compounds against two human cancer cell lines (SW982 and A549) were evaluated by CCK-8 assay. Compounds 1 and 4 showed medium anti-proliferative activity against SW982 cells, with IC50 values of 3.49 ± 0.10 and 6.42 ± 1.23 µM, respectively. Additionally, compounds 2, 7, and 8 exhibited medium anti-proliferative activity against A549 cells, with IC50 values ranging from 0.80 ± 0.05 to 6.60 ± 0.46 µM.


Assuntos
Dictamnus , Sesquiterpenos , Humanos , Dictamnus/química , Estrutura Molecular , Linhagem Celular , Espectroscopia de Ressonância Magnética , Sesquiterpenos/farmacologia
3.
Int J Biol Macromol ; 263(Pt 1): 130072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346615

RESUMO

MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.


Assuntos
Ascomicetos , Solanum melongena , Solanum , Verticillium , Solanum/genética , Verticillium/metabolismo , Ascomicetos/metabolismo , Solanum melongena/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Brain Behav Immun ; 117: 356-375, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320681

RESUMO

Both exogenous gaseous and liquid forms of formaldehyde (FA) can induce depressive-like behaviors in both animals and humans. Stress and neuronal excitation can elicit brain FA generation. However, whether endogenous FA participates in depression occurrence remains largely unknown. In this study, we report that midbrain FA derived from lipopolysaccharide (LPS) is a direct trigger of depression. Using an acute depressive model in mice, we found that one-week intraperitoneal injection (i.p.) of LPS activated semicarbazide-sensitive amine oxidase (SSAO) leading to FA production from the midbrain vascular endothelium. In both in vitro and in vivo experiments, FA stimulated the production of cytokines such as IL-1ß, IL-6, and TNF-α. Strikingly, one-week microinfusion of FA as well as LPS into the midbrain dorsal raphe nucleus (DRN, a 5-HT-nergic nucleus) induced depressive-like behaviors and concurrent neuroinflammation. Conversely, NaHSO3 (a FA scavenger), improved depressive symptoms associated with a reduction in the levels of midbrain FA and cytokines. Moreover, the chronic depressive model of mice injected with four-week i.p. LPS exhibited a marked elevation in the levels of midbrain LPS accompanied by a substantial increase in the levels of FA and cytokines. Notably, four-week i.p. injection of FA as well as LPS elicited cytokine storm in the midbrain and disrupted the blood-brain barrier (BBB) by activating microglia and reducing the expression of claudin 5 (CLDN5, a protein with tight junctions in the BBB). However, the administration of 30 nm nano-packed coenzyme-Q10 (Q10, an endogenous FA scavenger), phototherapy (PT) utilizing 630-nm red light to degrade FA, and the combination of PT and Q10, reduced FA accumulation and neuroinflammation in the midbrain. Moreover, the combined therapy exhibited superior therapeutic efficacy in attenuating depressive symptoms compared to individual treatments. Thus, LPS-derived FA directly initiates depression onset, thereby suggesting that scavenging FA represents a promising strategy for depression treatment.


Assuntos
Depressão , Lipopolissacarídeos , Humanos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Depressão/tratamento farmacológico , Doenças Neuroinflamatórias , Citocinas/metabolismo , Mesencéfalo/metabolismo , Formaldeído
5.
J Ethnopharmacol ; 326: 117918, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38382654

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The efficacy of clinical treatments for various liver diseases is intricately tied to the liver's regenerative capacity. Insufficient or failed liver regeneration is a direct cause of mortality following fulminant hepatic failure and extensive hepatectomy. Si-Ni-San (SNS), a renowned traditional Chinese medicine prescription for harmonizing liver and spleen functions, has shown clinical efficacy in the alleviation of liver injury for thousands of years. However, the precise molecular pharmacological mechanisms underlying its effects remain unclear. AIMS OF THE STUDY: This study aimed to investigate the effects of SNS on liver regeneration and elucidate the underlying mechanisms. MATERIALS AND METHODS: A mouse model of 70% partial hepatectomy (PHx) was used to analyze the effects of SNS on liver regeneration. Aquaporin-9 knockout mice (AQP9-/-) were used to demonstrate that SNS-mediated enhancement of liver regeneration was AQP9-targeted. A tandem dimer-Tomato-tagged AQP9 transgenic mouse line (AQP9-RFP) was utilized to determine the expression pattern of AQP9 protein in hepatocytes. Immunoblotting, quantitative real-time PCR, staining techniques, and biochemical assays were used to further explore the underlying mechanisms of SNS. RESULTS: SNS treatment significantly enhanced liver regeneration and increased AQP9 protein expression in hepatocytes of wild-type mice (AQP9+/+) post 70% PHx, but had no significant effects on AQP9-/- mice. Following 70% PHx, SNS helped maintain hepatic oxidative equilibrium by increasing the levels of reactive oxygen species scavengers glutathione and superoxide dismutase and reducing the levels of oxidative stress molecules H2O2 and malondialdehyde in liver tissues, thereby preserving this crucial process for hepatocyte proliferation. Simultaneously, SNS augmented glycerol uptake by hepatocytes, stimulated gluconeogenesis, and maintained glucose/lipid metabolism homeostasis, ensuring the energy supply required for liver regeneration. CONCLUSIONS: This study provides the first evidence that SNS maintains liver oxidative equilibrium and glucose/lipid metabolism homeostasis by upregulating AQP9 expression in hepatocytes, thereby promoting liver regeneration. These findings offer novel insights into the molecular pharmacological mechanisms of SNS in promoting liver regeneration and provide guidance for its clinical application and optimization in liver disease treatment.


Assuntos
Medicamentos de Ervas Chinesas , Peróxido de Hidrogênio , Regeneração Hepática , Camundongos , Animais , Peróxido de Hidrogênio/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatócitos , Glucose/metabolismo , Homeostase
6.
J Agric Food Chem ; 72(7): 3314-3324, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38331717

RESUMO

Fusarium species produce a secondary metabolite known as T-2 toxin, which is the primary and most harmful toxin found in type A trichothecenes. T-2 toxin is widely found in food and grain-based animal feed and endangers the health of both humans and animals. T-2 toxin exposure in humans and animals occurs primarily through food administration; therefore, the first organ that T-2 toxin targets is the gut. In this overview, the research progress, toxicity mechanism, and detoxification of the toxin T-2 were reviewed, and future research directions were proposed. T-2 toxin damages the intestinal mucosa and destroys intestinal structure and intestinal barrier function; furthermore, T-2 toxin disrupts the intestinal microbiota, causes intestinal flora disorders, affects normal intestinal metabolic function, and kills intestinal epidermal cells by inducing oxidative stress, inflammatory responses, and apoptosis. The primary harmful mechanism of T-2 toxin in the intestine is oxidative stress. Currently, selenium and plant extracts are mainly used to exert antioxidant effects to alleviate the enterotoxicity of T-2 toxin. In future studies, the use of genomic techniques to find upstream signaling molecules associated with T-2 enterotoxin toxicity will provide new ideas for the prevention of this toxicity. The purpose of this paper is to review the progress of research on the intestinal toxicity of T-2 toxin and propose new research directions for the prevention and treatment of T-2 toxin toxicity.


Assuntos
Enteropatias , Toxina T-2 , Tricotecenos , Humanos , Animais , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Tricotecenos/toxicidade , Tricotecenos/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo
7.
Medicine (Baltimore) ; 103(1): e36752, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181285

RESUMO

Bone development and lung function are integral to child and adolescent health. Both influence an individual's overall well-being and potentially affect long-term health. Utilizing a comprehensive dataset from the National Health and Nutrition Examination Survey, this study aims to elucidate the relationship between lung function and bone mineral density (BMD) in a representative sample of children and adolescents. The analysis covered 3410 participants aged 8 to 19 years. We employed weighted multivariate linear regression and restricted cubic spline curve visualizations to explore the intricate association between lung function metrics, particularly first-second expiratory volume 1 second/forced vital capacity ratio, and lumbar BMD. Our data indicated a positive association between lung function and lumbar BMD in children and adolescents. Specifically, higher lung function metrics were linked with increased lumbar BMD. This association was more pronounced in younger participants or those with a lower body mass index. A significant positive relationship exists between lung function and BMD in the pediatric population. Recognizing this association is crucial for holistic health strategies for children and adolescents. This study underscores the need for integrated health monitoring during formative years, which can influence health trajectories as these individuals transition to adulthood.


Assuntos
Densidade Óssea , Osteosclerose , Criança , Humanos , Adolescente , Inquéritos Nutricionais , Saúde do Adolescente , Benchmarking , Pulmão
8.
Phytomedicine ; 125: 155358, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241916

RESUMO

BACKGROUND: Bovine mastitis is the most common animal production disease in the global dairy industry, which affects the health of dairy cows. When bovine mastitis occurs, the mitochondrial metabolism of breast tissue increases, and the relationship between inflammation and mitophagy has become a hot topic for many scholars. The abuse of antibiotics leads to the increase of resistance to bovine mastitis. FTA is one of the main effective components of Forsythia suspensa, which has anti-inflammatory, anti-infection, anti-oxidation and anti-virus pharmacological effects, and has broad application prospects in the prevention and treatment of bovine mastitis. However, the relationship between the anti-inflammatory effects of FTA and mitophagy is still unclear. PURPOSE: This study mainly explores the anti-inflammatory effect of FTA in bovine mastitis and the relationship between mitophagy. METHODS: MAC-T cells and wild-type mice were used to simulate the in vitro and in vivo response of mastitis. After the pretreatment with FTA, CsA inhibitors and siPINK1 were used to interfere with mitophagy, and the mitochondrial function impairment and the expression of inflammatory factors were detected. RESULTS: It was found that pre-treatment with FTA significantly reduced LPS induced inflammatory response and mitochondrial damage, while promoting the expression of mitophagy related factors. However, after inhibiting mitophagy, the anti-inflammatory effect of FTA was inhibited. CONCLUSION: This study is the first to suggest the relationship between the anti-inflammatory effect of FTA and mitophagy. PINK1/Parkin-mediated mitophagy is one of the ways that FTA protects MAC-T cells from LPS-induced inflammatory damage.


Assuntos
Glicosídeos , Mastite Bovina , Mitofagia , Bovinos , Feminino , Camundongos , Animais , Humanos , Proteínas Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Mastite Bovina/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Anti-Inflamatórios/farmacologia
9.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139073

RESUMO

Peony pollen contains multiple nutrients and components and has been used as a traditional Chinese medicine with a long history, but the effect of the treatment of primary dysmenorrhea remains to be clarified. The aim of this study is to investigate the therapeutic effect of peony pollen on primary dysmenorrhea mice and the potential mechanism. A uterus contraction model in vitro and primary dysmenorrhea mice were used to evaluate the treatment effect of peony pollen on primary dysmenorrhea. The primary dysmenorrhea mice were treated with 62.5 mg/kg, 125 mg/kg, or 250 mg/kg of peony pollen, and the writhing response, latency period, histopathological changes in the uterus, prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) levels, and infiltration of neutrophils and macrophages were investigated. Protein expression of interleukin 1 ß (IL-1ß), interleukin 6 (IL-6), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cyclooxygenase-2 (COX-2), microsomal prostaglandin-E synthase 1 (mPGEs-1), BCL2-Associated X (Bax), B-cell lymphoma-2 (BCL-2), caspase-3, and cleaved caspase-3 were detected by Western blot, and the oxidative stress related marker malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and reactive oxygen species (ROS) were evaluated. Peony pollen could attenuate spontaneous or oxytocin-induced uterus contractions in vitro. Moreover, peony pollen decreased the writhing times, prolonged the writhing latency, and reduced the pathological damage of uterine tissues. Furthermore, the inflammatory cell infiltration and the protein expression of IL-1ß, IL-6, and NLRP3 were decreased. The COX-2/PGE2 pathway was inhibited; oxidative stress and apoptosis in the uterus also improved in the uterus of primary dysmenorrhea mice. Peony pollen exerts a positive effect on primary dysmenorrhea by inhibiting the inflammatory response and modulating oxidative stress and apoptosis by regulating the COX-2/PGE2 pathway.


Assuntos
Dinoprostona , Paeonia , Humanos , Feminino , Camundongos , Animais , Dinoprostona/metabolismo , Dismenorreia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Caspase 3 , Paeonia/metabolismo , Interleucina-6/efeitos adversos , Dinoprosta/metabolismo
10.
PLoS One ; 18(11): e0294436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972004

RESUMO

BACKGROUND: Sex hormone-related diseases, encompassing a wide range of conditions from reproductive disorders to certain cancers, pose significant health challenges worldwide. Recent scientific investigations have highlighted the intricate interplay between the gut microbiome and sex hormone regulation, indicating the potential for microbiota-targeted interventions in the management of such diseases. Although individual studies have elucidated the influence of the gut microbiome on sex hormones, a comprehensive cross-sectional examination of the population-wide prevalence of probiotic intake and its correlation with sex hormones is still lacking. OBJECTIVES: This study aimed to evaluate the association of probiotic ingestion with sex hormones in pre- and post-menopausal women. METHODS: We conducted an observational cohort study comprising a nationally representative sample of adults who participated in the National Health and Nutrition Examination Survey between 2013 and 2016. Probiotic ingestion was considered when a subject reported yogurt or probiotic supplement consumption during the 24-h dietary recall or during the Dietary Supplement Use 30-Day questionnaire. A survey-weighted generalized linear model was used to analyze the association between probiotic intake and female/male sex hormones. To reduce selection bias, we used propensity score matching (PSM). RESULTS: This study included 2,699 women, with 537 of them consuming yogurt and/or dietary supplements containing probiotics, while the remaining 2,162 women did not consume any probiotics. The findings indicated that there were associations between probiotic intake and sex hormone levels in premenopausal and postmenopausal women. For premenopausal women, probiotic intake was positively associated with estradiol (E2) levels. On the contrary, in postmenopausal women, probiotic intake was inversely associated with total testosterone (TT) levels. CONCLUSIONS: This study indicated that probiotic consumption was associated with higher E2 level in premenopausal women and lower TT level in postmenopausal women. Probiotic intake might be a sensible strategy for preventing sex hormone-related diseases.


Assuntos
Pós-Menopausa , Probióticos , Adulto , Humanos , Masculino , Feminino , Inquéritos Nutricionais , Pós-Menopausa/fisiologia , Estudos Transversais , Estudos de Coortes , Hormônios Esteroides Gonadais , Estradiol , Ingestão de Alimentos , Globulina de Ligação a Hormônio Sexual , Testosterona
11.
Environ Sci Pollut Res Int ; 30(52): 112159-112172, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831251

RESUMO

Lake eutrophication, exacerbated by high-intensity anthropogenic forcing, threatens water ecological security and the sustainable development of fisheries. Accurately evaluating lake eutrophication is the basis for effective management of the water environment. This study aimed to study eutrophication and its anthropogenic forcing in Chagan Lake, which is surrounded by agricultural areas with irrigation discharge as the primary water source. The spatiotemporal evolution characteristics of lake eutrophication and the anthropogenic forcing factors were analyzed based on the long-series multi-source data and modified eutrophication index. The results showed that (1) the average trophic state of Chagan Lake was eutrophic according to the modified eutrophication index (TLI = 58.31) and the nutrient level was higher in summer, reaching hypertrophy (TLI 61.49); (2) the maximum pollution footprint affecting the lake reached 34.7 km2, with a maximum buffer zone radius of 1 km; (3) the gross domestic product of primary industry, total sown area, and rice field area were the main anthropogenic factors leading to the lake eutrophication, with contribution rates of 64.43%, 13.09%, and 10.23%, respectively. Multidimensional management strategies for maximum pollution footprint, buffer zone radius, and contribution of anthropogenic factors were used to improve the water quality of the lake. The findings provided scientific support for the management of water environment of Chagan Lake and guided the formulation of "one lake, one policy."


Assuntos
Lagos , Qualidade da Água , Eutrofização , Agricultura , China , Monitoramento Ambiental , Fósforo/análise , Nitrogênio
12.
J Orthop Surg Res ; 18(1): 597, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574564

RESUMO

BACKGROUND: In the literature, scarce data investigate the link between 25-hydroxyvitamin D (25[OH]D) and blood lipids in the osteoporosis (OP) population. 25(OH)D, as a calcium-regulating hormone, can inhibit the rise of parathyroid hormone, increase bone mineralization to prevent bone loss, enhance muscle strength, improve balance, and prevent falls in the elderly. This retrospective cross-sectional study aimed to investigate the association between serum 25(OH)D levels and lipid profiles in patients with osteoporosis, with the objective of providing insight for appropriate vitamin D supplementation in clinical settings to potentially reduce the incidence of cardiovascular disease, which is known to be a major health concern for individuals with osteoporosis. METHODS: This is a retrospective cross-sectional study from the Affiliated Kunshan Hospital of Jiangsu University, including 2063 OP patients who received biochemical blood analysis of lipids during hospitalization from January 2015 to March 2022. The associations between serum lipids and 25(OH)D levels were examined by multiple linear regression. The dependent variables in the analysis were the concentrations of serum lipoprotein, total cholesterol (TC), triglycerides (TGs), apolipoprotein-A, lipoprotein A, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol (LDL-C). The independent variable was the concentration of blood serum 25(OH)D. At the same time, age, body mass index, sex, time and year of serum analysis, primary diagnosis, hypertension, diabetes, statins usage, beta-C-terminal telopeptide of type I collagen, procollagen type I N-terminal propeptide were covariates. Blood samples were collected in the early morning after the overnight fasting and were analyzed using an automated electrochemiluminescence immunoassay on the LABOSPECT 008AS platform (Hitachi Hi-Tech Co., Ltd., Tokyo, Japan). The generalized additive model was further applied for nonlinear associations. The inception result for smoothing the curve was evaluated by two-piecewise linear regression exemplary. RESULTS: Our results proved that in the OP patients, the serum 25(OH)D levels were inversely connected with blood TGs concentration, whereas they were positively associated with the HDL, apolipoprotein-A, and lipoprotein A levels. In the meantime, this research also found a nonlinear relationship and threshold effect between serum 25(OH)D and TC, LDL-C. Furthermore, there were positive correlations between the blood serum 25(OH)D levels and the levels of TC and LDL-C when 25(OH)D concentrations ranged from 0 to 10.04 ng/mL. However, this relationship was not present when 25(OH)D levels were higher than 10.04 ng/mL. CONCLUSIONS: Our results demonstrated an independent relationship between blood lipids and vitamin D levels in osteoporosis patients. While we cannot establish a causal relationship between the two, our findings suggest that vitamin D may have beneficial effects on both bone health and blood lipid levels, providing a reference for improved protection against cardiovascular disease in this population. Further research, particularly interventional studies, is needed to confirm these associations and investigate their underlying mechanisms.


Assuntos
Doenças Cardiovasculares , Osteoporose , Humanos , Idoso , Estudos Transversais , LDL-Colesterol , Estudos Retrospectivos , Vitamina D , Triglicerídeos , Lipídeos , Lipoproteína(a) , Apolipoproteínas
13.
Medicine (Baltimore) ; 102(31): e34590, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37543789

RESUMO

This study aimed to investigate the research hotspots and global trends of acupuncture in the treatment of headaches from 1974 to 2022. The Web of Science core collection database and literature related to acupuncture for headache treatment were retrieved. The CiteSpace (version 5.1.R8) and VOSviewer (version 1.6.19) software perform collaborative network analysis on the information of countries, academic institutions, authors, and co-occurrence network analysis on keywords, co-cited journals, and references. A total of 841 studies were included. Overall, the number of publications has increased over the past 5 decades. We identified and analyzed the countries, institutions, authors, and journals that were most active in the domain of acupuncture treatment for headaches. The most productive countries were the United States and China. Chengdu University of Traditional Chinese Medicine was the most productive institution and Linde Klaus was the most productive author. Cephalalgia was the most productive and co-cited journal, whereas Lancet had the highest impact factor. The research hotspots mainly focus on headache, migraine, tension headache, electroacupuncture, and acupuncture. Research trends have mainly focused on acupuncture therapy and its curative effects, migraine without aura, paroxysmal migraine, and the mechanism of acupuncture treatment. The main research hotspots and frontier trends were the therapeutic effect and mechanism of acupuncture for headaches. The mechanism of acupuncture in the treatment of headache mainly focused on the neural mechanism by multimodal MRI.


Assuntos
Terapia por Acupuntura , Transtornos de Enxaqueca , Cefaleia do Tipo Tensional , Humanos , Bibliometria , Cefaleia/terapia
14.
Poult Sci ; 102(9): 102878, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37413950

RESUMO

The gut is the first line of defense for body health and is essential to the overall health of geese. Grape seed procyanidins (GSPs) are proverbial for their antioxidant, anti-inflammatory, and microflora-regulating capabilities. This study aimed to inquire into the influences of dietary GSPs on the intestinal antioxidant function, barrier function, microflora, and metabolites of geese based on 16S rRNA sequencing and metabolomics. In total, 240 twenty-one-day-old Sichuan white geese were randomly divided into 4 groups, each of which was supplied with 1 of 4 diets: basal diet or a basal diet supplemented with 50, 100, or 150 mg/kg GSPs. Diets supplemented with GSPs at different concentrations significantly increased the total antioxidant capacity and superoxide dismutase activity in cecal mucosa (P < 0.001). Dietary supplementation with 50 or 100 mg/kg GSPs significantly increased catalase activity (P < 0.001). The serum diamine oxidase, D-lactic acid, and endotoxin concentrations were decreased by GSP supplementation in the goose diet. Dietary GSP supplementation increased microbial richness and diversity, enhanced the relative abundance of Firmicutes, and decreased that of Bacteroidetes in the cecum. Diets supplemented with 50 or 100 mg/kg GSPs enriched Eubacterium coprostanoligenes and Faecalibacterium. Dietary GSPs substantially raised the acetic and propionic acid concentrations in the cecum. The butyric acid concentration increased when the GSP dosage was 50 or 100 mg/kg. Additionally, dietary GSPs increased the levels of metabolites that belong to lipids and lipid-like molecules or organic acids and derivatives. Dietary GSP supplementation at 100 or 150 mg/kg reduced the levels of spermine (a source of cytotoxic metabolites) and N-acetylputrescine, which promotes in-vivo inflammation. In conclusion, dietary supplementation with GSPs was beneficial to gut health in geese. Dietary GSPs improved antioxidant activity; protected intestinal barrier integrity; increased the abundance and diversity of cecal microflora; promoted the proliferation of some beneficial bacteria; increased the production of acetic, propionic, and butyric acids in the cecum; and downregulated metabolites associated with cytotoxicity and inflammation. These results offer a strategy for promoting intestinal health in farmed geese.


Assuntos
Microbiota , Proantocianidinas , Vitis , Animais , Antioxidantes , Proantocianidinas/farmacologia , Gansos/microbiologia , RNA Ribossômico 16S , Galinhas , Suplementos Nutricionais/análise , Dieta/veterinária , Ceco/microbiologia , Ração Animal/análise
15.
J Transl Med ; 21(1): 451, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420234

RESUMO

BACKGROUND: Diabetic retinopathy (DR) development is associated with disturbances in the gut microbiota and related metabolites. Butyric acid is one of the short-chain fatty acids (SCFAs), which has been found to possess a potential antidiabetic effect. However, whether butyrate has a role in DR remains elusive. This study aimed to investigate the effect and mechanism of sodium butyrate supplementation on DR. METHODS: C57BL/6J mice were divided into three groups: Control group, diabetic group, and diabetic with butyrate supplementation group. Type 1 diabetic mouse model was induced by streptozotocin. Sodium butyrate was administered by gavage to the experimental group daily for 12 weeks. Optic coherence tomography, hematoxylin-eosin, and immunostaining of whole-mount retina were used to value the changes in retinal structure. Electroretinography was performed to assess the retinal visual function. The tight junction proteins in intestinal tissue were evaluated using immunohistochemistry. 16S rRNA sequencing and LC-MS/MS were performed to determine the alteration and correlation of the gut microbiota and systemic SCFAs. RESULTS: Butyrate decreased blood glucose, food, and water consumption. Meanwhile, it alleviated retinal thinning and activated microglial cells but improved electroretinography visual function. Additionally, butyrate effectively enhanced the expression of ZO-1 and Occludin proteins in the small intestine. Crucially, only butyric acid, 4-methylvaleric acid, and caproic acid were significantly decreased in the plasma of diabetic mice and improved after butyrate supplementation. The deeper correlation analysis revealed nine genera strongly positively or negatively correlated with the above three SCFAs. Of note, all three positively correlated genera, including norank_f_Muribaculaceae, Ileibacterium, and Dubosiella, were significantly decreased in the diabetic mice with or without butyrate treatment. Interestingly, among the six negatively correlated genera, Escherichia-Shigella and Enterococcus were increased, while Lactobacillus, Bifidobacterium, Lachnospiraceae_NK4A136_group, and unclassified_f_Lachnospiraceae were decreased after butyrate supplementation. CONCLUSION: Together, these findings demonstrate the microbiota regulating and diabetic therapeutic effects of butyrate, which can be used as a potential food supplement alternative to DR medicine.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Microbioma Gastrointestinal , Animais , Camundongos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , RNA Ribossômico 16S , Cromatografia Líquida , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico
16.
Bioresour Technol ; 384: 129325, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315627

RESUMO

The objective of this research was to elucidate the effect of varying proportions of magnesite (MS) addition - 0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4), and 10% (T5) - on nitrogen transformation and bacterial community dynamics during pig manure composting. In comparison to T1 (control), MS treatments amplified the abundance of Firmicutes, Actinobacteriota, and Halanaerobiaeota, bolstered the metabolic functionality of associated microorganisms, and enhanced the nitrogenous substance metabolic pathway. A complementary effect in core bacillus species played a key role in nitrogen preservation. Compared to T1, 10% MS demonstrated the most substantial influence on composting because Total Kjeldahl Nitrogen increased by 58.31% and NH3 emission decreased by 41.52%. In conclusion, 10% MS appears to be optimal for pig manure composting, as it can augment microbial abundance and mitigate nitrogen loss. This study offers a more ecologically sound and economically viable method for curtailing nitrogen loss during composting.


Assuntos
Compostagem , Nitrogênio , Animais , Suínos , Esterco , Solo , Bactérias
17.
Int J Biol Macromol ; 242(Pt 1): 124838, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172701

RESUMO

This study aimed to investigate the effects of different compound polysaccharides (CPs) extracted from Folium nelumbinis, Fructus crataegi, Fagopyrum tataricum, Lycium barbarum, Semen cassiae, and Poria cocos (w/w, 2:4:2:1:1.5:1) by gradient ethanol precipitation on the physicochemical properties and biological activities. Three CPs (CP50, CP70, and CP80) were obtained and comprised rhamnose, arabinose, xylose, mannose, glucose, and galactose in different proportions. The CPs contained different amounts of total sugar, uronic acid, and proteins. These also exhibited different physical properties, including particle size, molecular weight, microstructure, and apparent viscosity. Scavenging abilities of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 1,1'-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and superoxide radicals of CP80 were more potent compared to those of the other two CPs. Furthermore, CP80 significantly increased serum levels of high-density lipoprotein cholesterol (HDL-C) and lipoprotein lipase (LPL), and hepatic lipase (HL) activity in the liver, while decreasing the serum levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), along with LPS activity. Therefore, CP80 may serve as a natural novel lipid regulator in the field of medicinal and functional food.


Assuntos
Antioxidantes , Hipolipemiantes , Antioxidantes/farmacologia , Antioxidantes/química , Precipitação Fracionada , Hipolipemiantes/farmacologia , Hipolipemiantes/química , HDL-Colesterol , Polissacarídeos/farmacologia , Polissacarídeos/química , Extratos Vegetais
18.
Front Pharmacol ; 14: 1076815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229244

RESUMO

Introduction: Asparagus (Asparagus officinalis) is a perennial flowering plant species. Its main components have tumor-prevention, immune system-enhancement, and anti-inflammation effects. Network pharmacology is a powerful approach that is being applied increasingly to research of herbal medicines. Herb identification, study of compound targets, network construction, and network analysis have been used to elucidate how herbal medicines work. However, the interaction of bioactive substances from asparagus with the targets involved in multiple myeloma (MM) has not been elucidated. We explored the mechanism of action of asparagus in MM through network pharmacology and experimental verification. Methods: The active ingredients and corresponding targets of asparagus were acquired from the Traditional Chinese Medicine System Pharmacology database, followed by identification of MM-related target genes using GeneCards and Online Mendelian Inheritance in Man databases, which were matched with the potential targets of asparagus. Potential targets were identified and a target network of traditional Chinese medicine was constructed. The STRING database and Cytoscape were utilized to create protein-protein interaction (PPI) networks and further screening of core targets. Results: The intersection of target genes and core target genes of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway was enriched, the top-five core target genes were selected, and the binding affinity of corresponding compounds to the top-five core targets was analyzed using molecular docking. Network pharmacology identified nine active components of asparagus from databases based on oral bioavailability and drug similarity, and predicted 157 potential targets related to asparagus. Enrichment analyses showed that "steroid receptor activity" and the "PI3K/AKT signaling pathway" were the most enriched biological process and signaling pathway, respectively. According to the top-10 core genes and targets of the PPI pathway, AKT1, interleukin (IL)-6, vascular endothelial growth factor (VEGF)A, MYC, and epidermal growth factor receptor (EGFR) were selected for molecular docking. The latter showed that five core targets of the PI3K/AKT signaling pathway could bind to quercetin, among which EGFR, IL-6, and MYC showed strong docking, and the diosgenin ligand could bind to VEGFA. Cell experiments showed that asparagus, through the PI3K/AKT/NF-κB pathway, inhibited the proliferation and migration of MM cells, and caused retardation and apoptosis of MM cells in the G0/G1 phase. Discussion: In this study, the anti-cancer activity of asparagus against MM was demonstrated using network pharmacology, and potential pharmacological mechanisms were inferred using in vitro experimental data.

19.
Physiol Plant ; 175(3): e13920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37097722

RESUMO

Engineering anthocyanin biosynthesis in herbs could provide health-promoting foods for improving human health. Rehmannia glutinosa is a popular medicinal herb in Asia, and was a health food for the emperors of the Han Dynasty (59 B.C.). In this study, we revealed the differences in anthocyanin composition and content between three Rehmannia species. On the 250, 235 and 206 identified MYBs in the respective species, six could regulate anthocyanin biosynthesis by activating the ANTHOCYANIDIN SYNTHASE (ANS) gene expression. Permanent overexpression of the Rehmannia MYB genes in tobacco strongly promoted anthocyanin content and expression levels of NtANS and other genes. A red appearance of leaves and tuberous/roots was observed, and the total anthocyanin content and the cyanidin-3-O-glucoside content were significantly higher in the lines overexpressing RgMYB41, RgMYB42, and RgMYB43 from R. glutinosa, as well as RcMYB1 and RcMYB3 in R. chingii and RhMYB1 from R. henryi plants. Knocking out of RcMYB3 by CRISPR/Cas9 gene editing resulted in the discoloration of the R. chingii corolla lobes, and decreased the content of anthocyanin. R. glutinosa overexpressing RcMYB3 displayed a distinct purple color in the whole plants, and the antioxidant activity of the transgenic plants was significantly enhanced compared to WT. These results indicate that Rehmannia MYBs can be used to engineer anthocyanin biosynthesis in herbs to improve their additional value, such as increased antioxidant contents.


Assuntos
Rehmannia , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rehmannia/genética , Rehmannia/metabolismo , Antocianinas/metabolismo , Genes myb , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
20.
Phytomedicine ; 112: 154720, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36868108

RESUMO

BACKGROUND: Macroautophagy (henceforth autophagy) is the major form of autophagy, which delivers intracellular cargo to lysosomes for degradation. Considerable research has revealed that the impairment of lysosomal biogenesis and autophagic flux exacerbates the development of autophagy-related diseases. Therefore, reparative medicines restoring lysosomal biogenesis and autophagic flux in cells may have therapeutic potential against the increasing prevalence of these diseases. PURPOSE: The aim of the present study was thus to explore the effect of trigonochinene E (TE), an aromatic tetranorditerpene isolated from Trigonostemon flavidus, on lysosomal biogenesis and autophagy and to elucidate the potential underlying mechanism. METHODS: Four human cell lines, HepG2, nucleus pulposus (NP), HeLa and HEK293 cells were applied in this study. The cytotoxicity of TE was evaluated by MTT assay. Lysosomal biogenesis and autophagic flux induced by 40 µM TE were analyzed using gene transfer techniques, western blotting, real-time PCR and confocal microscopy. Immunofluorescence, immunoblotting and pharmacological inhibitors/activators were applied to determine the changes in the protein expression levels in mTOR, PKC, PERK, and IRE1α signaling pathways. RESULTS: Our results showed that TE promotes lysosomal biogenesis and autophagic flux by activating the transcription factors of lysosomes, transcription factor EB (TFEB) and transcription factor E3 (TFE3). Mechanistically, TE induces TFEB and TFE3 nuclear translocation through an mTOR/PKC/ROS-independent and endoplasmic reticulum (ER) stress-mediated pathway. The PERK and IRE1α branches of ER stress are crucial for TE-induced autophagy and lysosomal biogenesis. Whereas TE activated PERK, which mediated calcineurin dephosphorylation of TFEB/TFE3, IRE1α was activated and led to inactivation of STAT3, which further enhanced autophagy and lysosomal biogenesis. Functionally, knockdown of TFEB or TFE3 impairs TE-induced lysosomal biogenesis and autophagic flux. Furthermore, TE-induced autophagy protects NP cells from oxidative stress to ameliorate intervertebral disc degeneration (IVDD). CONCLUSIONS: Here, our study showed that TE can induce TFEB/TFE3-dependent lysosomal biogenesis and autophagy via the PERK-calcineurin axis and IRE1α-STAT3 axis. Unlike other agents regulating lysosomal biogenesis and autophagy, TE showed limited cytotoxicity, thereby providing a new direction for therapeutic opportunities to use TE to treat diseases with impaired autophagy-lysosomal pathways, including IVDD.


Assuntos
Endorribonucleases , Núcleo Pulposo , Humanos , Calcineurina , Células HEK293 , Proteínas Serina-Treonina Quinases , Estresse Oxidativo , Autofagia , Lisossomos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA