RESUMO
In this paper, liquid-liquid chromatography was introduced for the first time for the separation of fingered citron (Citrus medica L. var. sarcodactylis Swingle). The fingered citron cultivated in Jinhua is of significant industrial and medicinal value, with several major coumarin compounds detected in its extract. Therefore, further separation for higher purity was of necessity. A preparative liquid-liquid chromatographic method was developed by combining two elution modes (isocratic and step-gradient) with selection according to different polarities of the target sample. Five coumarin derivatives-5,7-dimethoxycoumarin (52.6 mg, 99.6%), phellopterin (4.9 mg, 97.1%), 5-prenyloxy-7-methoxycoumarin (6.7 mg, 98.7%), 6-hydroxy-7-methoxycoumarin (7.1 mg, 82.2%), and byakangelicol (10.5 mg, 90.1%)-with similar structures and properties were isolated on a large scale from 100 mg of petroleum ether (PE) extract and 100 mg of ethyl acetate (EA) extract in Jinhua fingered citron. The productivity was much improved. The anti-growth activity of the isolated coumarins was evaluated against three cancer cell lines (HeLa, A549, and MCF7) with an MTT assay. The coumarins demonstrated potential anti-tumor activity on the HeLa cell line, with 5,7-dimethoxycoumarin in particular exhibiting the best anti-growth activity (IC50 = 10.57 ± 0.24 µM) by inhibiting proliferation. It inhibited colony formation and reduced the size of the tumor sphere in a concentration-dependent manner. The main mechanism was confirmed as inducing apoptosis. This work was informative for further studies aimed at exploring new natural-product-based antitumor agents.
Assuntos
Citrus , Extratos Vegetais , Humanos , Células HeLa , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cumarínicos/farmacologia , Citrus/química , Cromatografia LíquidaRESUMO
Recently, hypothermal photothermal therapy (HPTT) seemed essential for the future clinical transformation of cancer optical therapies. However, at a lower working temperature, heat shock proteins (HSPs) seriously affect the anti-tumor effect of HPTT. This work reports a reasonable design of a dual-responsive nanoplatform for the synergistic treatment of chemotherapy and HPTT. We adopted a one-step method to wrap indocyanine green (ICG) into imidazole skeleton-8 (ZIF-8) and further loaded it with the chemotherapy drug doxorubicin (DOX). Furthermore, we introduced Hsp-70 siRNA to block the affection of HSPs at an upstream node, thereby avoiding the side effects of traditional heat shock protein inhibitors. The prepared ZIF-8@ICG@DOX@siRNA nanoparticles (ZID-Si NPs) could significantly improve the stability of siRNA to effectively down-regulate the expression of HSP70 protein during the photothermal therapy, thus realizing the pH-controlled and NIR-triggered release of the chemotherapeutical drug DOX. Moreover, tumors were also imaged accurately by ICG wrapped in ZID-Si nanoparticles. After the evaluation of the in vitro and in vivo photothermal effect as well as the anti-tumor activity, we found that the added Hsp-70 siRNA enhanced the synergistic anti-cancer activity of HPTT and chemotherapy. In summary, this work holds great potential in cancer treatment, and suggests better efficacy of synergistic chemo/HPTT than the single-agent therapy.
Assuntos
Hipertermia Induzida , Nanopartículas , Doxorrubicina , Liberação Controlada de Fármacos , Verde de Indocianina , Terapia Fototérmica , RNA Interferente Pequeno/genéticaRESUMO
The antibacterial agents and therapies today are facing serious problems such as drug resistance. Introducing dual inhibiting effect is a valid approach to solve this trouble and bring advantages including wide adaptability, favorable safety and superiority of combination. We started from potential DNA Gyrase inhibitory backbone isatin to develop oxoindolin derivatives as atypical dual Gyrase (major) and FabH (assistant) inhibitors via a two-round screening. Aiming at blocking both duplication (Gyrase) and survival (FabH), most of synthesized compounds indicated potency against Gyrase and some of them inferred favorable inhibitory effect on FabH. The top hit I18 suggested comparable Gyrase inhibitory activity (IC50â¯=â¯0.025⯵M) and antibacterial effect with the positive control Novobiocin (IC50â¯=â¯0.040⯵M). FabH inhibitory activity (IC50â¯=â¯5.20⯵M) was also successfully introduced. Docking simulation hinted possible important interacted residues and binding patterns for both target proteins. Adequate Structure-Activity Relation discussions provide the future orientations of modification. With high potency, low initial toxicity and dual inhibiting strategy, advanced compounds with therapeutic methods will be developed for clinical application.
Assuntos
Acetiltransferases/antagonistas & inibidores , DNA Girase/química , Proteínas de Escherichia coli/antagonistas & inibidores , Indóis/química , Inibidores da Topoisomerase II/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Acetiltransferases/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , DNA Girase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Ácido Graxo Sintase Tipo II/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologiaRESUMO
A series of rhodanine derivatives RB1-RB23 were synthesized through a two-round screening. Their Mycobacterial tuberculosis (Mtb) InhA inhibitory activity and Mtb growth blocking capability were evaluated. The most potent hit compound RB23 indicated comparable InhA inhibiton (IC50â¯=â¯2.55⯵M) with the positive control Triclosan (IC50â¯=â¯6.14⯵M) and Isoniazid (IC50â¯=â¯8.29⯵M). Its improved growth-blocking effect on Mtb and low toxicity were attractive for further development. The docking simulation revealed the possible binding pattern of this series and picked the key interacted residues as Ser20, Phe149, Lys165 and Thr196. The 3D-QSAR model visualized the SAR discussion and hinted new information. Modifying the surroundings near rhodanine moiety might be promising attempts in later investigations.
Assuntos
Proteínas de Bactérias/metabolismo , Oxirredutases/metabolismo , Rodanina/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Oxirredutases/antagonistas & inibidores , Estrutura Terciária de Proteína , Relação Quantitativa Estrutura-Atividade , Rodanina/metabolismo , Rodanina/farmacologiaRESUMO
A series of oxadiazole derivatives containing 1,4-benzodioxan (4a-4s) have been first synthesized for their potential immunosuppressive activity. Among the compounds, compound 4i showed the most potent biological activity against RAW264.7 cells (inhibition=37.66±2.34% for NO overproduction and IC(50)=0.05µM for iNOS). Docking simulation was performed to position compound 4i into the iNOS structure active site to determine the probable binding model. RT-PCR experiment results demonstrated that some of these compounds possessed good immunosuppressive activity against iNOS, especially for compound 4i. Therefore, compound 4i with potent inhibitory activity may be a potential agent.