Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theranostics ; 9(2): 608-619, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809296

RESUMO

Nanoparticle-based theranostics combines tumor imaging and cancer therapy in one platform, but the synthesis of theranostic agents is impeded by chemical groups on the surface and the size and morphology of the components. Strategies to construct a multifunctional platform for bioimaging and photothermal therapy (PTT) are urgently needed. A new upconversion-magnetic agent (FeCUPs) based on hollow carbon spheres, which is both a photothermal agent and a dual carrier of luminescent and magnetic nanoparticles, provides an effective approach for tumor elimination. Methods: The morphology of FeCUPs was characterized for the construction and size adjustment of the theranostic agent using transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy and high angle annular dark field scanning transmission electron microscopy. The distribution of FeCUPs was tracked under in-situ upconversion luminescence (UCL) imaging and magnetic resonance imaging (MRI) in vivo. Photothermal therapy was carried out on tumor-bearing mice, after which the toxicity of PTT was evaluated by a blood biochemistry test and histological section analysis. Results: Stable and uniform loading of luminescent nanocomposites on three-dimensional carbon materials is reported for the first time. Based on the mechanism of synthesis, the size of the hybrid particles was adjusted from micrometers to nanometers. External magnetic field-enhanced photothermal therapy with multi-model imaging was accomplished using FeCUPs. Moreover, no cancer recurrence was found during 14 days of recovery without PTT. Conclusions: Hollow carbon spheres, photothermal agents loaded with upconversion nanoparticles inside and magnetic nanoparticles outside were prepared for photothermal therapy. The aggregation of FeCUPs in tumors by the local magnetic field was verified by MRI and UCL imaging, and PTT was enhanced.


Assuntos
Diagnóstico por Imagem/métodos , Hipertermia Induzida/métodos , Nanopartículas/administração & dosagem , Neoplasias/diagnóstico , Neoplasias/terapia , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Carbono/administração & dosagem , Carbono/farmacocinética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Medições Luminescentes , Imageamento por Ressonância Magnética , Magnetismo , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura
2.
Nanoscale ; 7(30): 13105-15, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26176908

RESUMO

To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K(+), Ca(2+), Na(+), Mg(2+) and SO4(2-) decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L(-1)) and a long nano-TiO2 deposition time (48 h), the concentration of Na(+) decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L(-1), respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO4(2-) decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L(-1), respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.


Assuntos
Nanopartículas Metálicas/química , Titânio/química , Adsorção , Óxido de Alumínio/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Conexina 43/metabolismo , Exocitose/efeitos dos fármacos , Fluoresceína-5-Isotiocianato/química , Troca Iônica , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Camundongos , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA