Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834288

RESUMO

Low phosphorus (LP) stress leads to a significant reduction in wheat yield, primarily in the reduction of biomass, the number of tillers and spike grains, the delay in heading and flowering, and the inhibition of starch synthesis and grouting. However, the differences in regulatory pathway responses to low phosphorus stress among different wheat genotypes are still largely unknown. In this study, metabolome and transcriptome analyses of G28 (LP-tolerant) and L143 (LP-sensitive) wheat varieties after 72 h of normal phosphorus (CK) and LP stress were performed. A total of 181 and 163 differentially accumulated metabolites (DAMs) were detected for G28CK vs. G28LP and L143CK vs. L143LP, respectively. Notably, the expression of pilocarpine (C07474) in G28CK vs. G28LP was significantly downregulated 4.77-fold, while the expression of neochlorogenic acid (C17147) in L143CK vs. L143LP was significantly upregulated 2.34-fold. A total of 4023 differentially expressed genes (DEGs) were acquired between G28 and L143, of which 1120 DEGs were considered as the core DEGs of LP tolerance of wheat after LP treatment. The integration of metabolomics and transcriptomic data further revealed that the LP tolerance of wheat was closely related to 15 metabolites and 18 key genes in the sugar and amino acid metabolism pathway. The oxidative phosphorylation pathway was enriched to four ATPases, two cytochrome c reductase genes, and fumaric acid under LP treatment. Moreover, PHT1;1, TFs (ARFA, WRKY40, MYB4, MYB85), and IAA20 genes were related to the Pi starvation stress of wheat roots. Therefore, the differences in LP tolerance of different wheat varieties were related to energy metabolism, amino acid metabolism, phytohormones, and PHT proteins, and precisely regulated by the levels of various molecular pathways to adapt to Pi starvation stress. Taken together, this study may help to reveal the complex regulatory process of wheat adaptation to Pi starvation and provide new genetic clues for further study on improving plant Pi utilization efficiency.


Assuntos
Plântula , Transcriptoma , Plântula/genética , Plântula/metabolismo , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Metaboloma/genética , Fósforo/metabolismo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Cells ; 12(10)2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37408231

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 µM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.


Assuntos
Hordeum , Melatonina , Fósforo , Raízes de Plantas , Estresse Fisiológico , Melatonina/farmacologia , Melatonina/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fósforo/deficiência , Hordeum/efeitos dos fármacos , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Genótipo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
3.
Front Plant Sci ; 12: 703255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290730

RESUMO

Halogeton glomeratus is a succulent annual herbaceous halophyte belonging to the Chenopodiaceae family, has attracted wide attention as a promising candidate for phytoremediation and as an oilseed crop and noodle-improver. More importantly, H. glomeratus has important medicinal value in traditional Chinese medicine. However, there are few comprehensive studies on the nutrients, particularly secondary metabolites. Here, we adopted untargeted metabolomics to compare the differences in metabolites of different tissues (root, stem, leaf, and seed) and identify the compounds related to pharmacological effects and response to abiotic stress in H. glomeratus. A total of 2,152 metabolites were identified, and the metabolic profiles of root, stem, leaf, and seed samples were clearly separated. More than 50% of the metabolites showed significant differences among root, stem, leaf, and seed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differential metabolites suggested an extensive alteration in the metabolome among the different organs. Furthermore, the identified metabolites related to pharmacological effects and response to abiotic stress included flavones, flavonols, flavandiols, glucosinolates, isoquinolines, pyridines, indoles, amino acids, lipids, carbohydrates, and ATP-binding cassette transporters. These metabolites have application in treating human cardiovascular diseases, cancers, diabetes, and heart disease, induce sleeping and have nutritive value. In plants, they are related to osmotic adjustment, alleviating cell damage, adjusting membrane lipid action and avoiding toxins. To the best of our knowledge, this is the first metabolomics-based report to overview the metabolite compounds in H. glomeratus and provide a reference for future development and utilization of H. glomeratus.

4.
Zhongguo Zhong Yao Za Zhi ; 37(22): 3375-80, 2012 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-23373205

RESUMO

OBJECTIVE: To reveal the allelopathy effect of Astragalus membranaceus var. mongholicus seeds and provide information for the intercrop production. METHOD: The A. membranaceus. var. mongholicus seeds were soaked in distilled water for different time (12, 24, 36, 48, 60 h) , and then the seed extracts were used to study their effects on the seed germination, seedling growth and development of two Codonopsis pilosula. RESULT: The A. membranaceus var. mongholicus seeds contained some allelopathy compounds. Their soaked liquid had significantly influence on the seed germination and seedling growth of C. pilosula. The seed germination rate, germination power, germination index and vigor index of two C. pilosula calrivar were improved and then inhabited with soaking time elongation. The extract soaking for 24 h significantly improved the germination traits but the extract for 60 h appeared different degrees of inhibiting vigor. The seed extracts soaking ranging between 12 and 60 h all significantly improved the above plant growth of C. pilosula but significant inhibited their radicle growth in length. And with the soaking time elongation the facilitation effect weakened and the inhibiting effect enhanced, especially more significant in the C. pilosula caltivar (Baitiaodangshen). CONCLUSION: The A. membranaceus var. mongholicus seeds have allelopathic compounds and the endogenous inhibitor can be extracted when soaked for more than 24 h in water with intact seeds, resulting in improvement of seed germination rate. The C. pilosula could be intercropped in A. membranaceus var. mongholicus field, however, when intercroped it should notice that the intercrop proportion should vary with the caltivar.


Assuntos
Astragalus propinquus/química , Codonopsis/efeitos dos fármacos , Germinação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plântula/crescimento & desenvolvimento , Sementes/química , Codonopsis/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA