Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 325: 117864, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38325671

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Cananga oil (CO) is derived from the flowers of the traditional medicinal plant, the ylang-ylang tree. As a traditional antidepressant, CO is commonly utilized in the treatment of various mental disorders including depression, anxiety, and autism. It is also recognized as an efficient antibacterial insecticide, and has been traditionally utilized to combat malaria and acute inflammatory responses resulting from bacterial infections both in vitro and in vivo. AIM OF THE STUDY: The objective of this study is to comprehensively investigate the anti-Salmonella activity and mechanism of CO both in vitro and in vivo, with the expectation of providing feasible strategies for exploring new antimicrobial strategies and developing novel drugs. METHODS: The in vitro antibacterial activity of CO was comprehensively analyzed by measuring MIC, MBC, growth curve, time-killing curve, surface motility, biofilm, and Live/dead bacterial staining. The analysis of the chemistry and active ingredients of CO was conducted using GC-MS. To examine the influence of CO on the membrane homeostasis of Salmonella, we conducted utilizing diverse techniques, including ANS, PI, NPN, ONPG, BCECF-AM, DiSC3(5), and scanning electron microscopy (SEM) analysis. In addition, the antibacterial mechanism of CO was analyzed and validated through metabolomics analysis. Finally, a mouse infection model of Salmonella typhimurium was established to evaluate the toxic side effects and therapeutic effects of CO. RESULTS: The antibacterial effect of CO is the result of the combined action of the main chemical components within its six (palmitic acid, α-linolenic acid, stearic acid, benzyl benzoate, benzyl acetate, and myristic acid). Furthermore, CO disrupts the balance of purine metabolism and the tricarboxylic acid cycle (TCA cycle) in Salmonella, interfering with redox processes. This leads to energy metabolic disorders and oxidative stress damage within the bacteria, resulting in bacterial shock, enhanced membrane damage, and ultimately bacterial death. It is worth emphasizing that CO exerts an effective protective influence on Salmonella infection in vivo within a non-toxic concentration range. CONCLUSION: The outcomes indicate that CO displays remarkable anti-Salmonella activity both in vitro and in vivo. It triggers bacterial death by disrupting the balance of purine metabolism and the TCA cycle, interfering with the redox process, making it a promising anti-Salmonella medication.


Assuntos
Cananga , Infecções por Salmonella , Humanos , Animais , Camundongos , Ciclo do Ácido Cítrico , Infecções por Salmonella/tratamento farmacológico , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Homeostase , Purinas/farmacologia , Testes de Sensibilidade Microbiana
2.
Artigo em Inglês | MEDLINE | ID: mdl-35600957

RESUMO

The present study was clarified the relationship between NG2 glial cells and 5-hydroxytryptamine (5-HT) to further revealed a role in the regulation of cortical excitability. The co-localization of NG2 cells and 5-HT in rat prefrontal cortex was determined using immunofluorescence. Different concentrations of 5-HT were applied to cultured NG2 cells. Real-time PCR measured the expression of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) and brain-derived neurotrophic factor (BDNF). Changes in the expression of IL-1ß, TNF-α, and BDNF in NG2 cells were detected after the addition of 5-HT receptor specific blockers and phospholipase C (PLC) specific activators and inhibitors. The results confirmed that the NG2 protein and 5-HT co-localized in the prefrontal cortex. 5-HT treatment of NG2 cells significantly reduced the expression of IL-1ß and BDNF mRNA and increased the expression of TNF-α. The 5-HT receptor specific inhibitors alverine citrate, ketanserin, ondansetron and SB-399885 blocked the regulatory effects of 5-HT on NG2 cells. The PLC signal was linked to the secretion of IL-1ß, TNF-α and BDNF in NG2 cells. These results indicated that 5-HT affected IL-1ß, TNF-α, and BDNF secretion from NG2 cells via the 5-HT1A, 5-HT2A, 5-HT3, 5-HT6 receptors and the PLC signaling pathway.

3.
Arq Neuropsiquiatr ; 80(3): 289-295, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35416841

RESUMO

BACKGROUND: Acupuncture is a treatment for neuropathic pain, but its mechanism remains unclear. Previous studies showed that analgesia was induced in rats with neuropathic pain when their spinal cord adenosine content increased after electroacupuncture (EA); however, the mechanism behind this electroacupuncture-induced increase has not been clarified. OBJECTIVE: This study aimed to determine the role that ecto-5'-nucleotidase plays in EA-induced analgesia for neuropathic pain. METHODS: We performed electroacupuncture at the Zusanli acupoint on the seventh day after establishing a rat model of neuropathic pain induced through chronic constriction injuries. We observed the mechanical withdrawal threshold and thermal pain threshold and detected the expression of ecto-5'-nucleotidase in the spinal cord using Western blot. Chronic constriction injury rat models were intraperitoneally injected with α,ß-methyleneadenosine 5'-diphosphate, an ecto-5'-nucleotidase inhibitor, 30 min before electroacupuncture. The adenosine content of the spinal cord was detected using high-performance liquid chromatography. Lastly, the adenosine A1 receptor agonist N6-cyclopentyladenosine was intrathecally injected into the lumbar swelling of the rats, and the mechanical withdrawal and thermal pain thresholds were reevaluated. RESULTS: Analgesia and increased ecto-5'-nucleotidase expression and adenosine content in the spinal cord were observed 1 h after electroacupuncture. α,ß-methyleneadenosine 5'-diphosphate was able to inhibit upregulation of adenosine content and electroacupuncture-induced analgesia. After administration of N6-cyclopentyladenosine, electroacupuncture-induced analgesia was restored. CONCLUSIONS: Our results suggest that electroacupuncture at Zusanli can produce analgesia in chronic constriction injury rat models, possibly via the increased ecto-5'-nucleotidase expression induced through electroacupuncture, thus leading to increased adenosine expression in the spinal cord.


Assuntos
Analgesia , Eletroacupuntura , Neuralgia , 5'-Nucleotidase/metabolismo , Adenosina , Animais , Neuralgia/terapia , Nucleotidases , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
4.
Am J Chin Med ; 50(4): 979-1006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35475976

RESUMO

Electroacupuncture (EA) is commonly used to treat cerebrovascular diseases. This study aimed to clarify the mechanisms of action of treatments of cerebral ischemic stroke from the perspective of gut microecology. We used a mouse model and cell cultures to investigate the effects of EA on the intestinal microflora in mice models of middle cerebral artery occlusion (MCAO) and the mechanisms underlying the antioxidant activities of metabolites. Fecal microbiota transplantation (FMT) was used to validate the roles of gut microbiota. Metabolomic analysis was performed to characterize the metabolic profile differences between the mice in the EA + MCAO and MCAO groups. Gavaging with feces relieved brain damage in mice that received EA (EA mice) more than in mice that did not (non-EA [NEA] mice). The gut microbial composition and metabolic profiles of the EA and NEA mice were different. In particular, the microbiota from the mice in the EA or EA-FMT groups generated more indole-3-propionic acid (IPA) than the microbiota from the mice in the MCAO or NEA-FMT groups. We confirmed that IPA binds to specific melatonin receptors (MTRs) in target cells and exerts antioxidant effects by adding MTR inhibitors or knocking out the MTR1 gene in vivo and in the oxygen and glucose deprivation/reperfusion models of N2a cell experiments. EA can prevent ischemic stroke by improving the composition of intestinal microbiota in MCAO mice. Moreover, this study reveals a new mechanism of intestinal flora regulation of stroke that differs from inflammation/immunity, namely gut microbiota regulates stroke by affecting IPA levels.


Assuntos
Isquemia Encefálica , Eletroacupuntura , Microbioma Gastrointestinal , Indóis , AVC Isquêmico , Receptores de Melatonina , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Indóis/metabolismo , Infarto da Artéria Cerebral Média , AVC Isquêmico/terapia , Camundongos , Receptores de Melatonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA