Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(1): e0087321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019680

RESUMO

The limited number of available effective agents necessitates the development of new antifungals. We report that jervine, a jerveratrum-type steroidal alkaloid isolated from Veratrum californicum, has antifungal activity. Phenotypic comparisons of cell wall mutants, K1 killer toxin susceptibility testing, and quantification of cell wall components revealed that ß-1,6-glucan biosynthesis was significantly inhibited by jervine. Temperature-sensitive mutants defective in essential genes involved in ß-1,6-glucan biosynthesis, including BIG1, KEG1, KRE5, KRE9, and ROT1, were hypersensitive to jervine. In contrast, point mutations in KRE6 or its paralog SKN1 produced jervine resistance, suggesting that jervine targets Kre6 and Skn1. Jervine exhibited broad-spectrum antifungal activity and was effective against human-pathogenic fungi, including Candida parapsilosis and Candida krusei. It was also effective against phytopathogenic fungi, including Botrytis cinerea and Puccinia recondita. Jervine exerted a synergistic effect with fluconazole. Therefore, jervine, a jerveratrum-type steroidal alkaloid used in pharmaceutical products, represents a new class of antifungals active against mycoses and plant-pathogenic fungi. IMPORTANCE Non-Candida albicans Candida species (NCAC) are on the rise as a cause of mycosis. Many antifungal drugs are less effective against NCAC, limiting the available therapeutic agents. Here, we report that jervine, a jerveratrum-type steroidal alkaloid, is effective against NCAC and phytopathogenic fungi. Jervine acts on Kre6 and Skn1, which are involved in ß-1,6-glucan biosynthesis. The skeleton of jerveratrum-type steroidal alkaloids has been well studied, and more recently, their anticancer properties have been investigated. Therefore, jerveratrum-type alkaloids could potentially be applied as treatments for fungal infections and cancer.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Parede Celular/metabolismo , Fungos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Veratrum/química , beta-Glucanas/metabolismo , Alcaloides/isolamento & purificação , Antifúngicos/isolamento & purificação , Candida/efeitos dos fármacos , Candida/genética , Candida/metabolismo , Parede Celular/efeitos dos fármacos , Fungos/genética , Fungos/metabolismo , Humanos , Micoses/microbiologia , Extratos Vegetais/isolamento & purificação
2.
Nat Chem Biol ; 13(9): 982-993, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28759014

RESUMO

Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.


Assuntos
Sistemas de Liberação de Medicamentos , Bibliotecas de Moléculas Pequenas , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Estrutura Molecular
3.
Biochem Biophys Res Commun ; 394(3): 569-73, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20214890

RESUMO

The telomere-associated protein tankyrase 1 is a poly(ADP-ribose) polymerase and is considered to be a promising target for cancer therapy, especially for BRCA-associated cancers. However, an efficient assay system for inhibitor screening has not been established, mainly due to the difficulty of efficient preparation of the enzyme and its substrate. Here, we report a cell-based assay system for detecting inhibitory activity against tankyrase 1. We found that overexpression of the human tankyrase 1 gene causes a growth defect in the fission yeast Schizosaccharomyces pombe. Chemicals that restore the growth defect phenotype can be identified as potential tankyrase 1 inhibitors. We performed a high-throughput screen using this system, and identified flavone as a compound that restores the growth of yeast cells overexpressing tankyrase 1. Indeed, flavone inhibited poly(ADP-ribosyl)ation of proteins caused by overexpression of tankyrase 1 in yeast cells. This system allows rapid identification of inhibitory activity against tankyrase 1 and is amenable to high-throughput screening using robotics.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/isolamento & purificação , Flavonoides/isolamento & purificação , Ensaios de Triagem em Larga Escala , Tanquirases/antagonistas & inibidores , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Flavonas , Flavonoides/química , Flavonoides/farmacologia , Humanos , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Tanquirases/genética
4.
Curr Opin Chem Biol ; 12(1): 55-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18282487

RESUMO

As the genomes of many organisms have been sequenced, a variety of global analyses, called 'omics,' have been initiated. Cloning of the set of all open reading frames encoded by the genome (ORFeome) of an organism is a major challenge, which serves as an indispensable provision before one launches into the ocean of the postgenomic world. A suitable strategy for high-throughput cloning and expression of thousands of genes is crucial to success. Recently developed systems employing site-specific or homologous recombination have made it feasible to manipulate thousands of ORFs en masse. Using these technologies, several recent studies have successfully fished biologically active small molecules and target proteins out of this bountiful ocean.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Biblioteca Genômica , Fases de Leitura Aberta , Proteômica , Proteínas/genética , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA