Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Life Sci ; 288: 120183, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848193

RESUMO

AIMS: Streptozotocin (STZ)-induced diabetic animal models have been widely used to study diabetic myopathy; however, non-specific cytotoxic effects of high-dose STZ have been discussed. The purpose of this study was to compare diabetic myopathy in a high-STZ model with another well-established STZ model with reduced cytotoxicity (high-fat diet (HFD) and low-dose STZ) and to identify mechanistic insights underlying diabetic myopathy in STZ models that can mimic perturbations observed in human patients with diabetic myopathy. MAIN METHODS: Male C57BL6 mice were injected with a single high dose of STZ (180 mg/kg, High-STZ) or were given HFD plus low-dose STZ injection (STZ, 55 mg/kg/day, five consecutive days, HFD/STZ). We characterized diabetic myopathy by histological and immunochemical analyses and conducted gene expression analysis. KEY FINDINGS: The high-STZ model showed a significant reduction in tibialis anterior myofiber size along with decreased satellite cell content and downregulation of inflammation response and collagen gene expression. Interestingly, blood corticosteroid levels were significantly increased in the high-STZ model, which was possibly related to lowered inflammation response-related gene expression. Further analyses using the HFD/STZ model showed downregulation of gene expression related to mitochondrial functions accompanied by a significant decrease in ATP levels in the muscles. SIGNIFICANCE: The high-STZ model is suitable for studies regarding not only severe diabetic myopathy with excessive blood glucose but also negative impact of glucocorticoids on skeletal muscles. In contrast, the HFD/STZ model is characterized by higher immune responses and lower ATP production, which also reflects the pathologies observed in human diabetic patients.


Assuntos
Trifosfato de Adenosina/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/complicações , Dieta Hiperlipídica , Doenças Musculares/patologia , Animais , Glicemia/metabolismo , Complicações do Diabetes/etiologia , Complicações do Diabetes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Musculares/etiologia , Doenças Musculares/metabolismo
2.
Sci Rep ; 9(1): 14101, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575974

RESUMO

Tubulointerstitial fibrosis is a progressive process affecting the kidneys, causing renal failure that can be life-threatening. Thus, renal fibrosis has become a serious concern in the ageing population; however, fibrotic development cannot be diagnosed early and assessed noninvasively in both patients and experimental animal models. Here, we found that serum amyloid A3 (Saa3) expression is a potent indicator of early renal fibrosis; we also established in vivo Saa3/C/EBPß-promoter bioluminescence imaging as a sensitive and specific tool for early detection and visualization of tubulointerstitial fibrosis. Saa3 promoter activity is specifically upregulated in parallel with tumor necrosis factor α (TNF-α) and fibrotic marker collagen I in injured kidneys. C/EBPß, upregulated in injured kidneys and expressed in tubular epithelial cells, is essential for the increased Saa3 promoter activity in response to TNF-α, suggesting that C/EBPß plays a crucial role in renal fibrosis development. Our model successfully enabled visualization of the suppressive effects of a citrus flavonoid derivative, glucosyl-hesperidin, on inflammation and fibrosis in kidney disease, indicating that this model could be widely used in exploring therapeutic agents for fibrotic diseases.


Assuntos
Fibrose/tratamento farmacológico , Glucosídeos/farmacologia , Hesperidina/análogos & derivados , Nefropatias/tratamento farmacológico , Luciferases/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteína Amiloide A Sérica/genética , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular , Fibrose/genética , Flavonoides/farmacologia , Hesperidina/farmacologia , Humanos , Rim/efeitos dos fármacos , Nefropatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA