Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809917

RESUMO

Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.


Assuntos
Portadores de Fármacos , Nanomedicina , Mucilagem Vegetal , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Gomas Vegetais/química , Gomas Vegetais/uso terapêutico , Mucilagem Vegetal/química , Mucilagem Vegetal/uso terapêutico
2.
Nutr Cancer ; 73(8): 1511-1519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32757805

RESUMO

The apigenin is a bioactive flavonoid mostly found in fruits and vegetables that possess various biological activities. The current study was performed to compare the biological potentials of sodium citrate-based (SC-SNPs) and apigenin-based (AP-SNPs) synthesized silver nanoparticles under the in vitro and in vivo conditions. The synthesized silver nanoparticles were physically and chemically characterized. The anticancer, pro-apoptotic, and their anti-bacterial activities were determined. Further, the mice trial was conducted to determine the possible toxic effects of the synthesized silver nanoparticles. The result of particle size analysis revealed the nanometer sizes of the SC-SNPs and AP-SNPs were about 95.5 and 93.94 nm, respectively. Both nanoparticles indicated pseudo-spherical shape, homogenous dispersion with an appropriate good degree of stability. However, the anticancer potential, pro-apoptotic effects and antibacterial activity of AP-SNPs were higher than that of SC-SNPs. Moreover, the mice trial indicated that AP-SNPs improved the liver function through modulation of liver enzymes, lipid peroxidation, and increase in the expression of antioxidant enzymes (SOD and GPx) as compared to the mice received AP-SNPs during 30 day experiment. Consequently the synthesis of silver nanoparticles using apigenin as reducing bioactive compound may result in production of silver nanoparticles with enhanced anticancer, antibacterial and antioxidant activities.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Antibacterianos/farmacologia , Apigenina/farmacologia , Camundongos , Extratos Vegetais , Citrato de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA