Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 843814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223998

RESUMO

Serotonin N-acetyltransferase (SNAT) is a key enzyme in the biosynthesis of melatonin, and plays an important role in the regulation of melatonin synthesis. The study of SNAT is of great significance to understand the function of melatonin. In this study, we analyzed the structural characteristics, phylogenetic relationship, gene structure, expression pattern, evolutionary relationship and stress response of the members of the SNAT gene family in upland cotton through bioinformatics. A putative Serotonin n-acetyltransferase gene GhSNAT3D was identified, and preliminarily function of GhSNAT3D was verified by virus-induced gene silencing. We identified a total of 52 SNAT genes in the whole genome of G. hirsutum, and part of the GhSNATs were regulated by exogenous melatonin. The content of melatonin, antioxidant enzyme activity and Ca2+ content of GhSNAT3D gene silenced plants decreased, and the salt tolerance of GhSNAT3D gene silenced plants was reduced. Exogenous melatonin supplementation restored the salt tolerance of GhSNAT3D gene silenced plants. GhSNAT3D may interact with GhSNAT25D and ASMT to regulate melatonin synthesis. This study provided an important basis for further study on the regulation of melatonin in cotton against abiotic stress.

2.
GM Crops Food ; 12(1): 564-585, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33938377

RESUMO

In vitro recalcitrance of wheat to regeneration is the major bottleneck for its improvement through callus-based genetic transformation. Nanotechnology is one of the most dynamic areas of research, which can transform agriculture and biotechnology to ensure food security on sustainable basis. Present study was designed to investigate effects of CuSO4, AgNO3 and their nanoparticles on tissue culture responses of mature embryo culture of wheat genotypes (AS-2002 and Wafaq-2001). Initially, MS-based callus induction and regeneration medium were optimized for both genotypes using various concentrations of auxin (2,4-D, IAA) and cytokinins (BAP, kinetin). The genotypes differed for embryogenic callus induction and regeneration potential. Genotype AS-2002 yielded maximum embryogenic calli in response to 3.0 mg/l 2,4-D, whereas Wafaq-2001 offered the highest embryogenic calli against 3.5 mg/l 2,4-D supplemented in the induction medium. Genotype AS-2002 showed maximum regeneration (59.33%) in response to regeneration protocol comprising 0.5 mg/l IAA, 0.3 mg/l BAP and 1.0 mg/l Kin, while Wafaq-2001 performed best in response to 0.5 mg/l IAA, 0.3 mg/l BAP and 1.5 mg/l Kin with 55.33% regeneration efficiency. The same optimized basal induction and regeneration medium for both genotypes were further used to study effects of CuSO4, AgNO3 and their nano-particles employing independent experiments. The optimized induction medium fortified with various concentrations of CuSO4 or CuNPs confirmed significant effects on frequency of embryogenic callus. Addition of either 0.020 mg/l or 0.025 mg/l CuSO4, or 0.015 mg/l CNPs showed comparable results for embryogenic callus induction and were statistically at par with embryogenic callus induction of 74.00%, 75.67% and 76.83%, respectively. Significantly higher regeneration was achieved from MS-based regeneration medium supplemented with 0.015 mg/l or 0.020 mg/l CuNPs than standard 0.025 mg/l CuSO4. In another study, the basal induction and regeneration medium were fortified with AgNO3 or AgNPs ranging from 1 to 7 mg/l along with basal regeneration media devoid of AgNO3 or AgNPs (control). The maximum embryogenic calli were witnessed from medium fortified with 3.0 mg/l or 4.0 mg/l AgNPs compared with control and rest of the treatments. The standardized regeneration medium fortified with 5.0 mg/l AgNO3 or 3.0 mg/l AgNPs showed pronounced effect on regeneration of wheat genotypes and offered maximum regeneration compared with control. The individual and combined effect of Cu and Ag nanoparticles along with control (basal regeneration media of each genotype) was also tested. Surprisingly, co-application of metallic NPs showed a significant increase in embryogenic callus formation of genotypes. Induction medium supplemented with 0.015 mg/l CuNPs + 4.0 mg/l AgNPs or 0.020 mg/l CuNPs + 2.0 mg/l AgNPs showed splendid results compared to control and other combination of Cu and Ag nanoparticles. The maximum regeneration was achieved by co-application of 0.015 mg/l CuNP and 4.0 mg/l AgNPs with 21% increment of regeneration over control. It is revealed that CuNPs and AgNPs are potential candidate to augment somatic embryogenesis and regeneration of mature embryo explants of wheat.Abbreviations: 2,4-D (2,4-dichlorophenoxyacetic acid), BAP (6-benzylaminopurine), IAA (Indole-3-acetic acid), AgNPs (silver nanoparticles), CuNPs (copper nanoparticles).


Assuntos
Nanopartículas Metálicas , Triticum , Cobre , Cinetina , Prata , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA