Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 299: 122573, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31865158

RESUMO

Continuous flow reactors with time intermittent operational (TIO) mode and spatial intermittent operational (SIO) mode were operated to evaluate the effects of operational modes on the removal performances, the characteristics of granules and the dynamics of microbial communities in simultaneous nitrification, denitrification and phosphorus removal (SNDPR) granular system. The results showed that the removal efficiency of TP, TN were 81.3%, 86.7% under TIO mode, and 70.6%, 77.4% under SIO mode, respectively. Meanwhile, the PN and value of PN/PS in SIO were higher than those in TIO. Besides, results of high-throughput pyrosequencing illustrated that the combination of filamentous archaea (Methanothrix) and filamentous bacteria (Thiothrix) had resulted in the increase of EPS and SVI under SIO mode. Finally, functional bacterial and archaeal species, involving HMA, AMA, AOA, DPAOs etc., were identified to reveal the effects of operational modes on the mechanism of nutrients removal in granular SNDPR continuous-flow system.


Assuntos
Microbiota , Esgotos , Reatores Biológicos , Desnitrificação , Nitrificação , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
2.
Eur Biophys J ; 46(5): 495-507, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28012038

RESUMO

Electrophysiology and mechanics are two essential components in the functions of cardiomyocytes and skeletal muscle cells. The simultaneous recording of electrophysiological and mechanical activities is important for the understanding of mechanisms underlying cell functions. For example, on the one hand, mechanisms under cardiovascular drug effects will be investigated in a comprehensive way by the simultaneous recording of electrophysiological and mechanical activities. On the other hand, computational models of electromechanics provide a powerful tool for the research of cardiomyocytes. The electrical and mechanical activities are important in cardiomyocyte models. The simultaneous recording of electrophysiological and mechanical activities can provide much experimental data for the models. Therefore, an efficient method for the simultaneous recording of the electrical and mechanical data from cardiomyocytes is required for the improvement of cardiac modeling. However, as far as we know, most of the previous methods were not easy to be implemented in the electromechanical recording. For this reason, in this study, a union method of microelectrode array and atomic force microscope was proposed. With this method, the extracellular field potential and beating force of cardiomyocytes were recorded simultaneously with a low root-mean-square noise level of 11.67 µV and 60 pN. Drug tests were conducted to verify the feasibility of the experimental platform. The experimental results suggested the method would be useful for the cardiovascular drug screening and refinement of the computational cardiomyocyte models. It may be valuable for exploring the functional mechanisms of cardiomyocytes and skeletal muscle cells under physiological or pathological conditions.


Assuntos
Eletricidade , Fenômenos Mecânicos , Microscopia de Força Atômica/instrumentação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Fenômenos Biomecânicos , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Epinefrina/farmacologia , Microeletrodos , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA