Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(8): 1010-1036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34553656

RESUMO

Coffee contains a variety of organic acids (OAs) and chlorogenic acids (CGAs) that contribute to overall sensory properties. Large variations in preparation and measurement methodology across the literature complicate interpretation of general trends. Here, we perform a systematic review and meta-analysis of the published literature to elucidate the concentrations of OAs and CGAs in both Coffea arabica (arabica) and Coffea canephora (robusta), for both green coffee and roasted coffee at multiple roast levels. A total of 129 publications were found to report acid concentration measurements, yielding 8,634 distinct data points. Analysis of the full data set reveals several trends. First, roasted robusta has considerably more acidic compounds than arabica with 2 to 5 times as much total OAs, and much larger amounts of formic and acetic acid. As for CGAs, in both arabica and robusta 5-CQA is the major component, and progressive roasting decreases the concentration of all CGAs. The total amount of CGA present was more dependent on roast level than the type of coffee (arabica vs. robusta). Overall, this meta-analysis suggests that the increases in certain OAs with roast level might play more of a role in the sensory profile of dark roast coffees than previously suspected.


Assuntos
Coffea , Café , Café/química , Coffea/química , Nucleotidiltransferases/análise , Sementes/química
2.
J Food Sci ; 87(4): 1837-1850, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35347719

RESUMO

Beverage color significantly affects perceived sensory quality and consumer preference. Although the color of coffee beans is well known to vary strongly with roast level, little work has examined how roast level and brewing conditions affect the color of the final beverage. Here, we report that the color of full immersion brewed coffee is significantly affected by both roast level and brewing temperature. Coffees from three different origins were each roasted to three different levels (light, medium, and dark) and then brewed at three different temperatures (4, 22, and 92°C). Each sample was brewed toward full extraction and then diluted to precisely 2% total dissolved solids so that differences in concentration would not confound color measurements. Absorbance spectra (UV-vis) and color tristimulus values (L*a*b*) were then collected and analyzed. We find that roast level had the strongest impact on brew color, and that brew temperature had a significant impact on color for light and medium roasts, with less impact on dark roasts. Qualitatively, the cold brewed coffees tended to be redder, while the hot brewed coffees were blacker. The results suggest that there is an opportunity to manipulate and brand brewed coffee color through judicious choices of roast level and brewing temperature. PRACTICAL APPLICATION: Color serves as an indicator of coffee quality and potentially could affect perceived sensory characteristics. Our results suggest that appropriate control of roast level and brew temperature could yield desired colors for novel coffee products.


Assuntos
Coffea , Café , Comportamento do Consumidor , Temperatura Alta , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA