Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 11(1): e0146440, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26771387

RESUMO

Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA.


Assuntos
Cálcio/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Deficiência de Ácido Fólico/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carboxina/farmacologia , Linhagem Celular , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Ácido Fólico/metabolismo , Células HeLa , Humanos , NADPH Oxidases/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Coelhos , Rotenona/farmacologia , Sulfonas/farmacologia , Tenoiltrifluoracetona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA