Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 38(1): 382-392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33682594

RESUMO

PURPOSE: To develop a head and neck hyperthermia phased array system compatible with a 1.5 T magnetic resonance (MR) scanner for noninvasive thermometry. METHODS: We designed a dielectric-parabolic-reflector antenna (DiPRA) based on a printed reflector backed dipole antenna and studied its predicted and measured performance in a flat configuration (30 mm thick water bolus and muscle equivalent layer). Thereafter, we designed a phased array applicator model ('MRcollar') consisting of 12 DiPRA modules placed on a radius of 180 mm. Theoretical heating performance of the MRcollar model was benchmarked against the current clinical applicator (HYPERcollar3D) using specific (3D) head and neck models of 28 treated patients. Lastly, we assessed the influence of the DiPRA modules on MR scanning quality. RESULTS: The predicted and measured reflection coefficients (S11) of the DiPRA module are below -20 dB. The maximum specific absorption rate (SAR) in the area under the antenna was 47% higher than for the antenna without encasing. Compared to the HYPERcollar3D, the MRcollar design incorporates 31% less demineralized water (-2.5 L), improves the predicted TC25 (target volume enclosed by 25% iso-SAR contour) by 4.1% and TC50 by 8.5%, while the target-to-hotspot quotient (THQ) is minimally affected (-1.6%). MR experiments showed that the DiPRA modules do not affect MR transmit/receive performance. CONCLUSION: Our results suggest that head and neck hyperthermia delivery quality with the MRcollar can be maintained, while facilitating simultaneous noninvasive MR thermometry for treatment monitoring and control.


Assuntos
Calefação , Hipertermia Induzida , Cabeça/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Pescoço/diagnóstico por imagem
2.
Int J Hyperthermia ; 37(1): 15-27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31918599

RESUMO

Clinical trials have demonstrated the therapeutic benefits of adding radiofrequency (RF) hyperthermia (HT) as an adjuvant to radio- and chemotherapy. However, maximum utilization of these benefits is hampered by the current inability to maintain the temperature within the desired range. RF HT treatment quality is usually monitored by invasive temperature sensors, which provide limited data sampling and are prone to infection risks. Magnetic resonance (MR) temperature imaging has been developed to overcome these hurdles by allowing noninvasive 3D temperature monitoring in the target and normal tissues. To exploit this feature, several approaches for inserting the RF heating devices into the MR scanner have been proposed over the years. In this review, we summarize the status quo in MR-guided RF HT devices and analyze trends in these hybrid hardware configurations. In addition, we discuss the various approaches, extract best practices and identify gaps regarding the experimental validation procedures for MR - RF HT, aimed at converging to a common standard in this process.


Assuntos
Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Terapia por Radiofrequência/métodos , Humanos
3.
Int J Hyperthermia ; 30(3): 184-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24773040

RESUMO

Magnetic resonance thermometry (MRT) offers non-invasive temperature imaging and can greatly contribute to the effectiveness of head and neck hyperthermia. We therefore wish to redesign the HYPERcollar head and neck hyperthermia applicator for simultaneous radio frequency (RF) heating and magnetic resonance thermometry. In this work we tested the feasibility of this goal through an exploratory experiment, in which we used a minimally modified applicator prototype to heat a neck model phantom and used an MR scanner to measure its temperature distribution. We identified several distorting factors of our current applicator design and experimental methods to be addressed during development of a fully MR compatible applicator. To allow MR imaging of the electromagnetically shielded inside of the applicator, only the lower half of the HYPERcollar prototype was used. Two of its antennas radiated a microwave signal (150 W, 434 MHz) for 11 min into the phantom, creating a high gradient temperature profile (ΔTmax = 5.35 °C). Thermal distributions were measured sequentially, using drift corrected proton resonance frequency shift-based MRT. Measurement accuracy was assessed using optical probe thermometry and found to be about 0.4 °C (0.1-0.7 °C). Thermal distribution size and shape were verified by thermal simulations and found to have a good correlation (r(2 )= 0.76).


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Hipertermia Induzida , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA