Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Metab ; 82: 101904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395148

RESUMO

OBJECTIVE: The prevalence of obesity has increased over the past three decades. Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) play a vital role in induction of satiety. Chronic consumption of high-fat diet is known to reduce hypothalamic neuronal sensitivity to hormones like leptin, thus contributing to the development and persistence of obesity. The functional and morphological effects of a high-calorie diet on POMC neurons and how these effects contribute to the development and maintenance of the obese phenotype are not fully understood. For this purpose, POMC-Cre transgenic mice model was exposed to high-fat diet (HFD) and at the end of a 3- and 6-month period, electrophysiological and morphological changes, and the role of POMC neurons in homeostatic nutrition and their response to leptin were thoroughly investigated. METHODS: Effects of HFD on POMC-satiety neurons in transgenic mice models exposed to chronic high-fat diet were investigated using electrophysiological (patch-clamp), chemogenetic and Cre recombinase advanced technological methods. Leptin, glucose and lipid profiles were determined and analyzed. RESULTS: In mice exposed to a high-fat diet for 6 months, no significant changes in POMC dendritic spine number or projection density from POMC neurons to the paraventricular hypothalamus (PVN), lateral hypothalamus (LH), and bed nucleus stria terminalis (BNST) were observed. It was revealed that leptin hormone did not change the electrophysiological activities of POMC neurons in mice fed with HFD for 6 months. In addition, chemogenetic stimulation of POMC neurons increased HFD consumption. In the 3-month HFD-fed group, POMC activation induced an orexigenic response in mice, whereas switching to a standard diet was found to abolish orexigenic behavior in POMC mice. CONCLUSIONS: Chronic high fat consumption disrupts the regulation of POMC neuron activation by leptin. Altered POMC neuron activation abolished the neuron's characteristic behavioral anorexigenic response. Change in nutritional content contributes to the reorganization of developing maladaptations.


Assuntos
Dieta Hiperlipídica , Leptina , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Leptina/metabolismo , Pró-Opiomelanocortina/metabolismo , Hipotálamo/metabolismo , Obesidade , Neurônios/metabolismo , Camundongos Transgênicos
2.
Cell Rep ; 43(1): 113630, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165803

RESUMO

Opioids are generally known to promote hedonic food consumption. Although much of the existing evidence is primarily based on studies of the mesolimbic pathway, endogenous opioids and their receptors are widely expressed in hypothalamic appetite circuits as well; however, their role in homeostatic feeding remains unclear. Using a fluorescent opioid sensor, deltaLight, here we report that mediobasal hypothalamic opioid levels increase by feeding, which directly and indirectly inhibits agouti-related protein (AgRP)-expressing neurons through the µ-opioid receptor (MOR). AgRP-specific MOR expression increases by energy surfeit and contributes to opioid-induced suppression of appetite. Conversely, its antagonists diminish suppression of AgRP neuron activity by food and satiety hormones. Mice with AgRP neuron-specific ablation of MOR expression have increased fat preference without increased motivation. These results suggest that post-ingestion release of endogenous opioids contributes to AgRP neuron inhibition to shape food choice through MOR signaling.


Assuntos
Analgésicos Opioides , Neurônios , Animais , Camundongos , Proteína Relacionada com Agouti/metabolismo , Analgésicos Opioides/farmacologia , Ingestão de Alimentos , Hipotálamo/metabolismo , Neurônios/metabolismo , Transdução de Sinais
3.
Int J Dev Neurosci ; 83(3): 307-319, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37029601

RESUMO

Maintenance of body temperature within physiological range is critical for the fetal and neonatal development. Hyperthermia is one of the most frequently encountered pediatric complaints and may cause neurological disorders due to neuronal injury. In this study, we aimed to investigate the effects of hyperthermia on behavioral alterations, neuronal survival, apoptosis, and cell proliferation in young male Sprague-Dawley rats. Twenty-one 13-day-old rats were randomly divided into three groups (n = 7 per group). Body temperature was increased to 39°C and 41°C in a hyperthermia induction chamber for 30 min, whereas the animals in control group were maintained at 36°C. Twenty-four hours after hyperthermia, animals were subjected to the open field test, elevated-O-maze test, and grip strength test to assess the locomotor activity, anxiety, and motor function. Neuronal survival, apoptosis, and cell proliferation were investigated in cortex, hippocampal dentate gyrus (DG) and CA1 regions, and corpus callosum (CC). Decreased locomotor activity and motor function and increased anxiety were observed in the hyperthermia groups, and these were more pronounced in the 41°C group. Neuronal survival was significantly decreased in DG, CA1, and CC in the hyperthermia groups (**p < 0.01). Apoptosis was significantly induced in cortex, DG, and CC of the animals exposed to heat (*p < 0.05). In addition, cell proliferation positivity decreased significantly only in DG and CC of the animals exposed to heat (*p < 0.05). Our results suggest that neurobehavioral deficits caused by hyperthermia may be due to the increased apoptosis and neuronal cell death and decreased cell proliferation in the brain of postnatal developing rats.


Assuntos
Hipertermia Induzida , Neurônios , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Apoptose , Proliferação de Células
4.
Environ Pollut ; 324: 121366, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858099

RESUMO

There is increasing concern about the effects of endocrine disrupting chemicals (EDCs) on human health. Recently, some EDCs are suggested to affect energy metabolism leading to increased risk of obesity. Obesogenic effects of some EDCs on adipogenesis have been reported, however, there is no study examining their potential actions on the brain circuits controlling feeding and metabolism. We have investigated effects of tributyltin (TBT) and dichlorodiphenyltrichloroethane (p,p'-DDT) on electrical activity on dorsomedial hypothalamic leptin receptor neurons (DMHLepR), morphological adaptations in neuronal anatomy of DMHLepR, locomotion, and anxiety-like behaviors in mice. Twenty-three Lep-Cre transgenic mice were intracranially injected with GFP virus. Control animals received intraperitoneal corn oil alone while group 2 and 3 received TBT (25 µg/kg) and p,p'-DDT (2 mg/kg) for one month. Locomotor activity and anxiety-like behavior of the animals were determined by open field test. Electrophysiological effects of TBT and p,p'-DDT on DMHLepR neurons were determined by patch clamp method. Neuronal anatomy was determined by confocal microscopy. Spontaneous firing frequency of DMHLepR neurons of TBT group of mice was significantly higher than both p,p'-DDT and control groups (p < 0.01). TBT and p,p'-DDT significantly decreased frequency of the spontaneous inhibitory post-synaptic currents to DMHLepR neurons compared to the control group (p < 0.05). The time spent in the center and the number of entrances to the center by the TBT-administered mice were significantly lower than other groups (p < 0.01). The total distance traveled and mean speed of the control group of mice were significantly higher than the p,p'-DDT- and TBT-administered animals (p < 0.0001). c-Fos activity of the p,p'-DDT- and TBT-administered animals were significantly elevated compared to the control group (p < 0.001), while no change in the number of dendritic spines were observed. In conclusion, this study demonstrates that exposure to TBT and p,p'-DDT alters electrical activity in DMHLepR neurons and behavioral state in mice.


Assuntos
Disruptores Endócrinos , Camundongos , Animais , Masculino , Humanos , Disruptores Endócrinos/metabolismo , Receptores para Leptina/metabolismo , DDT/metabolismo , Hipotálamo , Neurônios , Ansiedade/induzido quimicamente
5.
Cell Mol Neurobiol ; 42(3): 753-775, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32989586

RESUMO

Hypothalamic-pituitary-adrenal (HPA) axis regulates stress response in the body and abnormal increase in oxidative stress contributes to the various disease pathogenesis. Although hypothalamic distribution of Apelin receptor (APLNR) has been studied, the potential regulatory role in hormone releasing function of hypothalamus in response to stress is not well elucidated yet. To determine whether APLNR is involved in the protection of the hypothalamus against oxidative stress, gonadotropin-releasing hormone (GnRH) cells were used as an in vitro model system. GT1-7 mouse hypothalamic neuronal cell line was subjected to H2O2 and hypoxia induced oxidative stress under various circumstances including APLNR overexpression, knockdown and knockout. Overexpression and activation of APLNR in GnRH producing neurons caused an increase in cell proliferation under oxidative stress. In addition, blockage of APLNR function by siRNA reduced GnRH release. Activation of APLNR initiated AKT kinase pathway as a proliferative response against hypoxic culture conditions and blocked apoptosis. Although expression and activation of APLNR have not been related to GnRH neuron differentiation during development, positive contribution of activated APLNR signaling to GnRH release in mouse embryonic stem cell derived GnRH neurons was observed in the present study. Sustained overexpression and complete deletion of APLNR in mouse embryonic stem cell derived GnRH neurons reduced GnRH release in vitro. The present findings suggest that expression and activation of APLNR in GnRH releasing GT1-7 neurons might induce a protective mechanism against oxidative stress induced cell death and APLNR signaling may play a role in GnRH neurons.


Assuntos
Receptores de Apelina , Hormônio Liberador de Gonadotropina , Neurônios , Estresse Oxidativo , Animais , Receptores de Apelina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Peróxido de Hidrogênio , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo
6.
Sci Rep ; 10(1): 18162, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097800

RESUMO

PEA3 transcription factor subfamily is present in a variety of tissues with branching morphogenesis, and play a particularly significant role in neural circuit formation and specificity. Many target genes in axon guidance and cell-cell adhesion pathways have been identified for Pea3 transcription factor (but not for Erm or Er81); however it was not so far clear whether all Pea3 subfamily members regulate same target genes, or whether there are unique targets for each subfamily member that help explain the exclusivity and specificity of these proteins in neuronal circuit formation. In this study, using transcriptomics and qPCR analyses in SH-SY5Y neuroblastoma cells, hypothalamic and hippocampal cell line, we have identified cell type-specific and subfamily member-specific targets for PEA3 transcription factor subfamily. While Pea3 upregulates transcription of Sema3D and represses Sema5B, for example, Erm and Er81 upregulate Sema5A and Er81 regulates Unc5C and Sema4G while repressing EFNB3 in SH-SY5Y neuroblastoma cells. We furthermore present a molecular model of how unique sites within the ETS domain of each family member can help recognize specific target motifs. Such cell-context and member-specific combinatorial expression profiles help identify cell-cell and cell-extracellular matrix communication networks and how they establish specific connections.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Crescimento Neuronal/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fatores de Transcrição/metabolismo , Axônios , Linhagem Celular Tumoral , Movimento Celular/genética , Efrina-B3/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Hipocampo/citologia , Humanos , Hipotálamo/citologia , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Domínios Proteicos , Reação em Cadeia da Polimerase em Tempo Real , Semaforinas/genética , Ativação Transcricional
7.
Cell Metab ; 31(2): 313-326.e5, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31839488

RESUMO

Glucose is the essential energy source for the brain, whose deficit, triggered by energy deprivation or therapeutic agents, can be fatal. Increased appetite is the key behavioral defense against hypoglycemia; however, the central pathways involved are not well understood. Here, we describe a glucoprivic feeding pathway by tyrosine hydroxylase (TH)-expressing neurons from nucleus of solitary tract (NTS), which project densely to the hypothalamus and elicit feeding through bidirectional adrenergic modulation of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons. Acute chemogenetic inhibition of arcuate nucleus (ARC)-projecting NTSTH neurons or their target, AgRP neurons, impaired glucoprivic feeding induced by 2-Deoxy-D-glucose (2DG) injection. Neuroanatomical tracing results suggested that ARC-projecting orexigenic NTSTH neurons are largely distinct from neighboring catecholamine neurons projecting to parabrachial nucleus (PBN) that promotes satiety. Collectively, we describe a circuit organization in which an ascending pathway from brainstem stimulates appetite through key hunger neurons in the hypothalamus in response to hypoglycemia.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Regulação do Apetite , Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Núcleo Solitário/metabolismo , Animais , Feminino , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Núcleo Solitário/citologia
8.
Neurobiol Dis ; 121: 58-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240706

RESUMO

Prader-Willi and the related Schaaf-Yang Syndromes (PWS/SYS) are rare neurodevelopmental disorders characterized by overlapping phenotypes of high incidence of autism spectrum disorders (ASD) and neonatal feeding difficulties. Based on clinical and basic studies, oxytocin pathway defects are suggested to contribute disease pathogenesis but the mechanism has been poorly understood. Specifically, whether the impairment in oxytocin system is limited to neuropeptide levels and how the functional properties of broader oxytocin neuron circuits affected in PWS/SYS have not been addressed. Using cell type specific electrophysiology, we investigated basic synaptic and cell autonomous properties of oxytocin neurons in the absence of MAGEL2; a hypothalamus enriched ubiquitin ligase regulator that is inactivated in both syndromes. We observed significant suppression of overall ex vivo oxytocin neuron activity, which was largely contributed by altered synaptic input profile; with reduced excitatory and increased inhibitory currents. Our results suggest that dysregulation of oxytocin system goes beyond altered neuropeptide expression and synaptic excitation inhibition imbalance impairs overall oxytocin pathway function.


Assuntos
Antígenos de Neoplasias/fisiologia , Hipotálamo/fisiologia , Potenciais da Membrana , Neurônios/fisiologia , Ocitocina/fisiologia , Proteínas/fisiologia , Potenciais de Ação , Animais , Antígenos de Neoplasias/genética , Potenciais Pós-Sinápticos Excitadores , Feminino , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas/genética , Receptores de AMPA/metabolismo
9.
J Turk Ger Gynecol Assoc ; 19(4): 220-232, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30299265

RESUMO

Polycystic ovary syndrome (PCOS) is complex heterogeneous disorder that has several aspects in terms of pathology such as metabolic, endocrine, reproductive, and psychological. However, the etiology of PCOS remains poorly understood. Several studies suggest that insulin resistance and hyperandrogenism play a central role in the progression of PCOS pathophysiology. Therefore, common treatment strategies of PCOS are based on lifestyle modification, which include exercise, diet, and nutrient supplementation therapy. Recent studies have recommended some nutrients such as vitamins, minerals, and vitamin-like nutrients for the therapy of PCOS because each has at least one functional property in PCOS-induced pathways. Therefore, it is claimed that the cause of PCOS could be vitamin or mineral deficiency. This review aims to provide a critical literature survey on nutritional supplementation for the treatment of PCOS-associated endocrine and metabolic dysfunctions and discuss the role of nutrients in the management of PCOS in view of the clinical trials and experimental studies.

10.
Neurosci Lett ; 492(1): 55-8, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21276835

RESUMO

Kisspeptins, which are alternatively called as metastin since they were originally identified as products of metastasis suppressor gene KiSS-1, are the natural ligands for the G protein-coupled receptor 54 (GPR54). Kisspeptins are the most potent activators of hypothalamic-pituitary-gonadal (HPG) axis reported to date. The pulsatile pattern of GnRH release, which results in the intermittent release of gonadotropic hormones from the pituitary, has a critical importance for reproductive function but the factors responsible from this release pattern are not known. Therefore, the pattern of kisspeptin-induced intracellular signaling and the role of PKC in the intracellular signaling cascade were investigated by fluorescence calcium imaging using the immortalized GnRH-secreting GT1-7 hypothalamic neurons. Kisspeptin-10 caused a triphasic change characterized by an initial small increase followed by a significant decrease and increase in intracellular free calcium concentrations ([Ca(2+)](i)). The changes in [Ca(2+)](i) were significantly attenuated by pre-treatment with protein kinase C inhibitor. The compatibility of appeared mirrored-patterns of kisspeptin-10-induced changes in [Ca(2+)](i) concentrations in these neurons and GnRH secretion confirm the importance of intracellular calcium flux downstream from GPR54 through PKC signaling pathway.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Benzofenantridinas/farmacologia , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Hipotálamo/metabolismo , Kisspeptinas , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/farmacologia
11.
J Toxicol Environ Health A ; 70(13): 1108-15, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558805

RESUMO

Clarified slurry oil (CSO), and two crude oil samples, Belridge heavy crude oil (BHCO) and Lost Hills light crude oil (LHLCO), were examined for their ability to generate reactive oxygen species (ROS) in MCF-7 cells. Intracellular ROS and cell viability were determined in a flow cytometer using dihydroxyrhodamine 123 and propidium iodide, respectively. In experiments with short-term exposure, single-cell suspensions were loaded with the fluorescent probes and then treated with the oil samples (1 or 10 ppm). Measurements were made at 5, 15, 30, 60, and 90 min after addition of oil samples. In experiments with longer term exposure, preconfluent cell cultures were treated with oil samples for 6, 12, or 24 h prior to preparing single-cell suspensions. Both short-term and longer term treatment with oil samples resulted in elevated generation of reactive oxygen species (ROS). Cell cultures also were treated with benzo[a]pyrene, a polycyclic aromatic hydrocarbon detected in all three oil samples. Treatment with benzo[a]pyrene produced a significant increase in levels of ROS. The present findings suggest that oil samples with higher concentrations of polycyclic aromatic hydrocarbons may exert adverse effects on human mammary epithelial tissue through induction of oxidative stress.


Assuntos
Neoplasias da Mama/patologia , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Mama/efeitos dos fármacos , Feminino , Humanos , Estresse Oxidativo , Células Tumorais Cultivadas
12.
J Trop Pediatr ; 48(4): 204-9, 2002 08.
Artigo em Inglês | MEDLINE | ID: mdl-12200980

RESUMO

The effects of iron deficiency anemia (IDA) on nerve conduction and efficiency of iron therapy were investigated by peripheral nerve-electrophysiological measurements. Eighteen children (10 boys, eight girls; mean age 31 +/- 1.3 months) with IDA and 12 healthy children (six boys, six girls; mean age 29 +/- 1.3 months) were enrolled into the study. Nerve conduction velocity was measured in the median and posterior tibial nerve. After nerve conduction values were determined in the patients and controls, 6 mg/kg/24 h ferrous sulphate was given orally to the patients for 3 months and nerve conduction velocity tests were performed again. Median/motor and sensory nerve conduction velocity and tibial/motor nerve distal-amplitute values of children with IDA were lower than for the control group (p < 0.05, p < 0.01 and p < 0.001 respectively). With iron supplementation these values increased to the normal levels and even higher than control levels for some parameters. In correlation studies between whole blood parameters and nerve conduction velocity results, there was a correlation between median/sensory nerve conduction velocity values and serum iron levels. Additionally there was a correlation between some nerve conduction velocity values and age. In conclusion, the evidence from this preliminary study suggests that peripheral neuropathy may develop in children with IDA. Peripheral neuropathy symptoms in these patients may be improved by iron therapy.


Assuntos
Anemia Ferropriva/complicações , Anemia Ferropriva/tratamento farmacológico , Eletromiografia , Compostos Ferrosos/administração & dosagem , Nervo Mediano/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/etiologia , Nervo Tibial/efeitos dos fármacos , Administração Oral , Análise Química do Sangue , Pré-Escolar , Esquema de Medicação , Feminino , Seguimentos , Humanos , Lactente , Masculino , Nervo Mediano/fisiopatologia , Condução Nervosa/fisiologia , Probabilidade , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Nervo Tibial/fisiopatologia , Resultado do Tratamento
13.
Neuro Endocrinol Lett ; 21(4): 301-306, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11455362

RESUMO

OBJECTIVES: We have investigated the changes in serum luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone levels together with testicular histology in both pinealectomized (PNX) and intact rats. MATERIAL and METHODS: Twenty-one animals were PNX and allowed to recover for two months. Group I was assigned as PNX, group II PNX+melatonin and group III PNX+Human Chorionic Gonadotropin (HCG). Rats in group IV were sham PNX (S-PNX). An intact group of animals was s.c. injected with melatonin (0.5 mg/kg/day), another group with a combination of melatonin+HCG (5000 IU/kg/day) for seven days. Controls received saline alone (1 ml/kg). At the end, all animals were decapitated and blood samples obtained. Serum LH and FSH levels were determined by Radioimmunoassay, testosterone values by Chemiluminescent Enzyme Immunassay. Testicular tissue was collected and processed for light microscopy. RESULTS: Serum LH levels were increased following PNX, but no such increases were seen in testosterone. In the PNX+melatonin group, serum LH and testosterone values were found to be similar to those of S-PNX group. HCG supplementation to PNX rats resulted in significant decreases in LH (p<0.005), but increased testosterone levels (p<0.001). Melatonin administration to intact animals significantly decreased both LH and testosterone levels (p<0.01). Co-administration of HCG+melatonin resulted in significant decreases in LH (p<0.001) and increases in testosterone levels (p<0.01). Serum FSH values did not show significant changes among groups. Only HCG administration significantly reduced FSH levels (p<0.01). CONCLUSIONS: Our results suggest that melatonin inhibits testosterone secretion by acting at hypothalamo-pituitary axis. There is a functional relationship and feedback regulation between the pineal gland and the testes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA