Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 435: 128945, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500340

RESUMO

Ecotoxicological effects of spilled oils are well documented, but study of recovery of marine benthic communities is limited. Long-term recovery of hard bottom communities during physical and biological remediations after a spill was monitored. A 60-day experiment was conducted using a mesocosm with monitoring of eight endpoints by use of the sediment quality triad (SQT). First, physical treatment of hot water + high pressure flushing maximally removed residual oils (max=93%), showing the greatest recovery among SQT variables (mean=72%). Physical cleanup generally involved adverse effects such as depression of the microphytobenthic community during the initial period. Next, biological treatments, such as fertilizer, emulsifier, enzyme and augmentation of the microbes, all facilitated removal of oil (max=66%) enhancing ecological recovery. Analysis of the microbiome confirmed that oil-degrading bacteria, such as Dietzia sp. and Rosevarius sp. were present. A mixed bioremediation, including fertilizer + multi-enzyme + microbes (FMeM) maximized efficacy of remediation as indicated by SQT parameters (mean=47%). Natural attenuation with "no treatment" showed comparable recovery to other remediations. Considering economic availability, environmental performance, and technical applicability, of currently available techniques, combined treatments of physical removal via hand wiping followed by FMeM could be most effective for recovery of the rocky shore benthic community.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Fertilizantes , Sedimentos Geológicos/microbiologia , Óleos , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Biosens Bioelectron ; 159: 112193, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364941

RESUMO

Oil spills can be environmentally devastating and result in unintended economic and social consequences. An important element of the concerted effort to respond to spills includes the ability to rapidly classify and characterize oil spill samples, preferably on-site. An easy-to-use, handheld sensor is developed and demonstrated in this work, capable of classifying oil spills rapidly on-site. Our device uses the computational power and affordability of a Raspberry Pi microcontroller and a Pi camera, coupled with three ultraviolet light emitting diodes (UV-LEDs), a diffraction grating, and collimation slit, in order to collect a large data set of UV fluorescence fingerprints from various oil samples. Based on a 160-sample (in 5x replicates each with slightly varied dilutions) database this platform is able to classify oil samples into four broad categories: crude oil, heavy fuel oil, light fuel oil, and lubricating oil. The device uses principal component analysis (PCA) to reduce spectral dimensionality (1203 features) and support vector machine (SVM) for classification with 95% accuracy. The device is also able to predict some physiochemical properties, specifically saturate, aromatic, resin, and asphaltene percentages (SARA) based off linear relationships between different principal components (PCs) and the percentages of these residues. Sample preparation for our device is also straightforward and appropriate for field deployment, requiring little more than a Pasteur pipette and not being affected by dilution factors. These properties make our device a valuable field-deployable tool for oil sample analysis.


Assuntos
Petróleo/análise , Petróleo/classificação , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Fenômenos Químicos , Bases de Dados Factuais , Monitoramento Ambiental/métodos , Óleos Combustíveis/análise , Poluição por Petróleo/análise , Espectrometria de Fluorescência/métodos
3.
Environ Sci Technol ; 54(11): 6456-6467, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32267150

RESUMO

The long-term ecological impacts of the Exxon Valdez oil spill (EVOS) are compared to two extensively studied and more recent large spills: Deepwater Horizon (DWH) and the Hebei Spirit oil spill (HSOS). Each of the three spills differed in magnitude and duration of oil released, environmental conditions, ecological communities, response and clean up measures, and ecological recovery. The EVOS began on March 24, 1989, and released 40.8 million liters of Alaska North Slope crude oil into the cold, nearly pristine environment of Prince William Sound, Alaska. EVOS oiled wildlife and rocky intertidal shorelines and exposed early life stages of fish to embryotoxic levels of polycyclic aromatic hydrocarbons (PAH). Long-term impacts following EVOS were observed on seabirds, sea otters, killer whales, and subtidal communities. The DWH spill began on April 20, 2010, and released 507 million liters of light Louisiana crude oil from 1600 m on the ocean floor into the Gulf of Mexico over an 87-day period. The DWH spill exposed a diversity of complex aquatic communities in the deep ocean, offshore pelagic areas, and coastal environments to petroleum hydrocarbons. Large-scale persistent ecological effects included impacts to deep ocean corals, failed recruitment of oysters over multiple years, damage to coastal wetlands, and reduced dolphin, sea turtle, and seabird populations. The HSOS began on December 7, 2007, and released approximately 13 million liters of Middle East crude oils into ecologically sensitive areas of the Taean area of western Korea. Environmental conditions and the extensive initial cleanup of HSOS oil stranded on shorelines limited the long-term impacts to changes in composition and abundance of intertidal benthic communities. Comparisons of EVOS, DWH, and HSOS show the importance and complexity of the interactions among the environment, oil spill dynamics, affected ecological systems, and response actions.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Alaska , Animais , Golfo do México , Louisiana , Petróleo/análise , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , República da Coreia , Poluentes Químicos da Água/análise
4.
Water Res ; 168: 115183, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655438

RESUMO

Lubricant (lube) oil discharge from ships has been widely considered as normal "operational consumption", but is now deemed to be oil pollution. Despite the chronic contamination of the marine environment by lube oil, the number of studies related to its environmental impact, characteristics, and toxicity is limited. This study is the first attempt to investigate the environmental fate of lube oil subjected to photooxidation using in situ mesocosms. A tiered approach using thin-layer chromatography-flame ionization detection (TLC-FID), Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) demonstrated compositional changes in lube oil and the water-soluble fraction (WSF). Total polycyclic aromatic hydrocarbons (ΣPAHs) in lube oil after 96 h of photooxidation were measured at 79.8 and 41 µg/g in the control (Con) and exposure (Exp) groups, respectively. Meanwhile, the ΣPAHs concentration in WSF after 96 h was very low, at 0.25 and 0.45 µg/L in Con and Exp, respectively. FTIR and GC-MS helped identify bond changes and photoproducts in WSF. A wide range of photoproducts, including carboxylic acids, esters, anhydrides, aldehydes and ketones, were identified in WSF. Toxic effects of WSF in both the Con and Exp groups obtained after 96 h of photooxidation were evaluated on olive flounder (Paralichthys olivaceus) embryos. Morphological defects, especially tail fin fold defects, were found to be significantly elevated in both the Con and Exp groups, with marginally higher frequency in Exp. The results of this study demonstrate the need for further research on lube oil weathering, including monitoring over prolonged periods of time.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas , Lubrificantes
5.
Environ Int ; 136: 105438, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31884413

RESUMO

The 2007 Hebei Spirit oil spill (HSOS), the largest in the national history, has negatively impacted the entire environment and ecosystem along the west coast of South Korea. Although many studies have reported the damages and impacts from the HSOS, quantitative assessment evaluating the recovery time and status have not been documented. Here, we first address the recovery timeline of the HSOS, by comprehensive analyses of 10-years accumulated data in quantitative manner. Concentrations of residual oils in seawater, sediments, and oysters rapidly dropped to backgrounds in 16, 75, and 33 months, respectively. Also, damaged benthic communities of intertidal and subtidal areas were fully recovered only after ~6 years. The present results collectively indicated unexpectedly fast recovery of the damaged environment and ecosystem from such a huge oil spill. The high tidal mixing (~9 m tidal height) and intensive human cleanup (~1.2 million volunteers) at the initial cleanup period might have contributed to rapid recovery; cf. 4-5 times faster than the Exxon Valdez oil spill. However, potential risk to human health remains unclear. Thus, it is warranted to conduct more in depth epidemiological studies to address chronic health effects associated with the cleanup volunteers as well as the local residents who have been living nearby the oil spill impacted sites.


Assuntos
Ecossistema , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , República da Coreia , Água do Mar
6.
Chemosphere ; 237: 124346, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31376702

RESUMO

In this study, developmental toxicity was increased as the oil was further degraded under natural sunlight. Detailed chemical composition of the degraded oils was examined by use of gas chromatography (GC) and (-) electrospray ionization ultrahigh resolution mass spectrometry (UHR-MS). Baseline toxicities were estimated based on chemical activities of polycyclic aromatic hydrocarbons, and it was obvious that the predicted chemical activities can not explain increased toxicity alone. However, the ultrahigh resolution mass spectral abundance of polar compounds including O3 and O4 class compounds was significantly increased as the photodegradation proceeded. Further examination of double bond equivalence values of the compounds showed that polar compounds with both non-aromatic and aromatic polar structures were increased. Statistical analysis indicates that the increased toxicity can be well explained by the increased polar compounds. Therefore, the oxygenated compounds identified in this study can play an important role in toxicity of degraded oils.


Assuntos
Poluição por Petróleo/efeitos adversos , Petróleo , Fotólise , Luz Solar , Água/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oxirredução , Oxigênio/química , Petróleo/análise , Petróleo/efeitos da radiação , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Environ Pollut ; 254(Pt B): 112997, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454576

RESUMO

In order to gain insight into the human health implications of the Hebei Spirit Oil Spill (HSOS), the mechanism of toxicity of the Iranian heavy crude (IHC), the main oil component in the HSOS was investigated in Caenorhabditis elegans and zebrafish. The identified mechanism was translated to humans using blood samples from Taean residents, who experienced HSOS with different levels of exposure to the spill. C. elegans TF RNAi screening with IHC oil revealed the nucleotide excision repair (NER) pathway as being significantly involved by oil exposure. To identify the main toxicity contributors within the chemical mixture of the crude oil, further studies were conducted on C. elegans by exposure to C3-naphthalene, an alkylated polycyclic aromatic hydrocarbon (PAH), which constitutes one of the major components of IHC oil. Increased expression of NER pathway genes was observed following exposure to the IHC oil, C3-naphthalene enriched fraction and C3-naphthalene. As the NER pathway is conserved in fish and humans, the same experiment was conducted in zebrafish, and the data were similar to what was seen in C. elegans. Increased expression of NER pathway genes was observed in human samples from the high exposure group, which suggests the involvement of the NER pathway in IHC oil exposure. Overall, the study suggests that IHC oil may cause bulk damage to DNA and activation of the NER system and Alkylated PAHs are the major contributor to DNA damage. Our study provides an innovative approach for studying translational toxicity testing from model organisms to human health.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Reparo do DNA/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos , Peixe-Zebra/genética , Animais , Estudos de Coortes , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Modelos Animais , Petróleo/análise , Petróleo/toxicidade , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , República da Coreia , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 685: 324-331, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31176219

RESUMO

Biodegradation patterns of oil in four distinct phases were compared over a 14-day series of exposures. The dispersibility and stability of oil droplets in the water column were important factors affecting oil biodegradation. Due to the stability of oil droplets with particle interactions, oil-suspended particulate matter aggregates (OSA) showed a five-fold enhancement in biodegradation compared to non-dispersed oil. The reduction of total petroleum hydrocarbons was highest in OSA (51.45%), followed by chemically dispersed oil (33.5%), oil film (21.6%), and water-accommodated fractions (WAF, 14.3%). Polycyclic aromatic hydrocarbon (PAH) profiles and percentage weathering plots showed that reductions in PAHs in WAF, oil film, and chemically dispersed oil were mainly due to evaporation (41.5-69.5%) and only partially due to biodegradation (7.4-16.3%). However, the reduction of PAHs in OSA was driven more by biodegradation (36.8%) than evaporation (29.7%). The strong PAH-particle interactions in OSA inhibited evaporation of PAHs and enhanced microorganism biodegradation in the water column.


Assuntos
Biodegradação Ambiental , Poluição por Petróleo , Petróleo/metabolismo , Poluentes Químicos da Água/metabolismo , Material Particulado , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Água do Mar/química
9.
Environ Pollut ; 252(Pt A): 137-145, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31146227

RESUMO

While various bioremediation techniques have been widely used at oil spill sites, the in situ efficiency of such techniques on recovering the benthic communities in intertidal areas has not been quantified. Here, the performance of several bioremediation tools such as emulsifiers, multi-enzyme liquid (MEL), microbes, and rice-straw was evaluated by a 90-days semi-field experiment, particularly targeting recovery of benthic community. Temporal efficiency in the removal of sedimentary total petroleum hydrocarbons (TPH), reduction of residual toxicity, and recovery of bacterial diversity, microalgal growth, and benthic production was comprehensively determined. Concentrations of TPH and amphipod mortality for all treatments rapidly decreased within the first 10 days. In addition, the density of bacteria and microphytobenthos generally increased over time for all treatments, indicating recovery in the benthic community health. However, the recovery of some nitrifying bacteria, such as the class Nitrospinia (which are sensitive to oil components) remained incomplete (13-56%) during 90 days. Combination of microbe treatments showed rapid and effective for recovering the benthic community, but after 90 days, all treatments showed high recovery efficiency. Of consideration, the "no action" treatment showed a similar level of recovery to those of microbe and MEL treatments, indicating that the natural recovery process could prevail in certain situations.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Poluição por Petróleo/análise , Petróleo/metabolismo , Bactérias/metabolismo , Emulsificantes/farmacologia , Sedimentos Geológicos/microbiologia , Saúde Pública
10.
Mar Pollut Bull ; 138: 328-332, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30660281

RESUMO

In this study, the fate of residual oils was investigated during remediation activities for a year after the Wu Yi San oil spill. Microscope observations showed that relatively large amounts of oil-suspended particulate matter aggregate (OSA) were formed. Negatively buoyant OSA was the dominant form (>95%), followed by neutrally (~5%) and positively buoyant (<1%) forms. To elucidate the dominance of negative buoyancy OSA, physicochemical properties of the mineral and residual oils were identified. Chemical analysis showed that the weathering percentage of residual oils was 43.7 ±â€¯2.59%, which was the driving factor for sedimentation of OSA. As the density of oil increased with weathering stages, the density of OSA also increased simultaneously. These results showed that, during mechanical remediation activities, resurfaced residual oils can form negative buoyancy OSA which tends to sink and transfers oil contaminants from intertidal to benthic environments.


Assuntos
Sedimentos Geológicos/análise , Poluição por Petróleo/análise , Petróleo/análise , Poluentes Químicos da Água/análise , Baías , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , República da Coreia , Água do Mar/análise
11.
Environ Sci Technol ; 52(14): 7910-7920, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29898595

RESUMO

Dispersion and biodegradation of petroleum hydrocarbons are significantly enhanced by formation of oil-suspended particulate matter aggregates (OSAs), but little is known about their adverse effects on benthic invertebrates or microbes. In this study, we investigated: (1) bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) by the marine bivalve, Mactra veneriformis and (2) changes in composition and relative abundances of microbes, during 50-d of an OSAs feeding experiment. Total concentrations of PAHs increased more rapidly during the first week of exposure, peaked at Day 30, then gradually declined to the end of experiment. While bioaccumulation of PAHs by clams varied among the 20 target compounds, two major groups of PAHs were identified by cluster analysis. One group including 3-methylphenanthrene, 1,6-dimethylphenanthrene, 1,2,6,9-tetramethylphenanthrene, and benzo[ a]anthracene showed a fairly constant rate of accumulation, while the second group including 2-methyldibenzothiophene, 2,4-dimethyldibenzothiophene, 2,4,7-trimethyldibenzothiophene, 3-methylchrysene, 6-ethylchrysene, and 1,3,6-trimethylchrysene exhibited a bell-shaped pattern. Bioaccumulation of PAHs by clams was dependent on changes in abundance of Gammaproteobacteria, indicating active degradations of hydrocarbons by selected species. Six key species included: Porticoccus litoralis, Porticoccus hydrocarbonoclasticus, Cycloclasticus spirillensus, Alcanivorax borkumensis, Alcanivorax dieselolei, and Alkalimarinus sediminis. These results are the first to demonstrate interactions of OSAs and macrofauna/microbe in oil cleanup operations.


Assuntos
Bivalves , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Animais , Biodegradação Ambiental , Material Particulado
12.
Aquat Toxicol ; 200: 127-135, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29751159

RESUMO

To demonstrate the effects of weathered crude oil residue on the immune systems of resident fish, we measured the changes in toxic chemical concentrations, apoptosis, phagocytosis, metabolism, immune-related gene expression, and cell cycle arrest in livers or kidneys for up to 96 h after the weathered Iranian heavy crude oil (WIHCO) exposure by oral gavage in juvenile rockfish Sebastes schlegeli. Parent polyaromatic hydrocarbons (PAHs) in livers increased up to 5590 ng/g after 6 h exposure and then declined rapidly within 24 h. Hepato-detoxification and immune-related gene expression were also significantly increased (P < 0.05) after 6 h exposure and then declined rapidly within 24 h. However, biliary PAH metabolites and EROD activity remained elevated throughout the test period. Flow cytometry analysis also indicated sustained apoptosis and cell cycle arrests with reduced phagocytic activity for 96 h. Taken together, these results demonstrate rapid declination of the parent PAHs, whereas PAH metabolites remained much longer in tissues with prolonged suppression of immunity in molecular and cellular level, suggesting that weathered crude oil residue is likely linked to the high incidence of immune dysfunction in residential rockfish in oil spill area.


Assuntos
Bass/imunologia , Petróleo/toxicidade , Poluentes Químicos da Água/administração & dosagem , Poluentes Químicos da Água/toxicidade , Administração Oral , Animais , Bile/metabolismo , Biotransformação/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Irã (Geográfico) , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Environ Pollut ; 241: 254-264, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29807284

RESUMO

Crude oil and its derivatives are considered as one group of the most pervasive environmental pollutants in marine environments. Bioremediation using oil-degrading bacteria has emerged as a promising green cleanup alternative in more recent years. The employment of biosurfactant-producing and hydrocarbon-utilizing indigenous bacteria enhances the effectiveness of bioremediation by making hydrocarbons bioavailable for degradation. In this study, the best candidates of biosurfactant-producing indigenous bacteria were selected by screening of biochemical tests. The selected bacteria include Bacillus algicola (003-Phe1), Rhodococcus soli (102-Na5), Isoptericola chiayiensis (103-Na4), and Pseudoalteromonas agarivorans (SDRB-Py1). In general, these isolated species caused low surface tension values (33.9-41.3 mN m-1), high oil spreading (1.2-2.4 cm), and hydrocarbon emulsification (up to 65%) warranting active degradation of hydrocarbons. FT-IR and LC-MS analyses indicated that the monorhamnolipid (Rha-C16:1) and dirhamnolipid (Rha-Rha-C6-C6:1) were commonly produced by the bacteria as potent biosurfactants. The residual crude oil after the biodegradation test was quantitated using GC-MS analysis. The bacteria utilized crude oil as their sole carbon source while the amount of residual crude oil significantly decreased. In addition the cell-free broth containing biosurfactants produced by bacterial strains significantly desorbed crude oil in oil-polluted marine sediment. The selected bacteria might hold additional capacity in crude oil degradation. Biosurfactant-producing indigenous bacteria therefore degrade crude oil hydrocarbon compounds, produce biosurfactants that can increase the emulsification of crude oil and are thus more conducive to the degradation of crude oil.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Petróleo/análise , Tensoativos/química , Bacillus/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/química , Glicolipídeos , Hidrocarbonetos/metabolismo , Poluição por Petróleo/análise , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Environ Pollut ; 238: 739-748, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625298

RESUMO

Oil spills offshore can cause long-term ecological effects on coastal marine ecosystems. Despite their important ecological roles in the cycling of energy and nutrients in food webs, effects on bacteria, protists or arthropods are often neglected. Environmental DNA (eDNA) metabarcoding was applied to characterize changes in the structure of micro- and macro-biota communities of surface sediments over a 7-year period since the occurrence of Hebei Spirit oil spill on December 7, 2007. Alterations in diversities and structures of micro- and macro-biota were observed in the contaminated area where concentrations of polycyclic aromatic hydrocarbons were greater. Successions of bacterial, protists and metazoan communities revealed long-term ecological effects of residual oil. Residual oil dominated the largest cluster of the community-environment association network. Presence of bacterial families (Aerococcaceae and Carnobacteriaceae) and the protozoan family (Platyophryidae) might have conferred sensitivity of communities to oil pollution. Hydrocarbon-degrading bacterial families (Anaerolinaceae, Desulfobacteraceae, Helicobacteraceae and Piscirickettsiaceae) and algal family (Araphid pennate) were resistant to adverse effects of spilt oil. The protistan family (Subulatomonas) and arthropod families (Folsomia, Sarcophagidae Opomyzoidea, and Anomura) appeared to be positively associated with residual oil pollution. eDNA metabarcoding can provide a powerful tool for assessing effects of anthropogenic pollution, such as oil spills on sediment communities and its long-term trends in coastal marine environments.


Assuntos
DNA Bacteriano/análise , Monitoramento Ambiental , Sedimentos Geológicos/microbiologia , Poluição por Petróleo/análise , Petróleo/análise , Bactérias/genética , Biota , Código de Barras de DNA Taxonômico , Ecossistema , Sedimentos Geológicos/química , Hidrocarbonetos/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise
15.
Mar Pollut Bull ; 127: 264-272, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29475662

RESUMO

Endocrine disrupting potentials were assessed for sediment samples collected near Hebei Spirit oil spill (HSOS) site, between December 2007 and January 2012. For comparison, major crude oil (CO) of HSOS, or its weathered form were assessed. Both raw extracts (REs) and their fractionated samples were tested using H295R and MVLNluc bioassays. In H295R cells, REs of crude and weathered oil (WO), and nine of 14 sediments significantly increased E2 levels, which were correlated with the concentrations of PAHs. Steroidogenic disruption potentials of the sediments generally decreased over time. Among silica fractions of all REs, aromatic hydrocarbons (F2) and polar compounds (F3) caused greater E2 levels. While, in MVLN cell bioassay, only three of 14 sediment REs showed estrogen receptor binding potencies, and no temporal trend was observed. In conclusion, oil spill can cause endocrine disruption in the affected ecosystem through steroidogenic alteration for years, and such potencies attenuate over time.


Assuntos
Disruptores Endócrinos/toxicidade , Sedimentos Geológicos , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Bioensaio , Linhagem Celular Tumoral , Ecossistema , Disruptores Endócrinos/análise , Monitoramento Ambiental , Estradiol/metabolismo , Sedimentos Geológicos/análise , Humanos , Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , República da Coreia , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
16.
Environ Pollut ; 234: 503-512, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29216488

RESUMO

The tidal flats near Sinduri beach in Taean, Korea, have been severely contaminated by heavy crude oils due to the Korea's worst oil spill accident, say the Hebei Spirit Oil Spill, in 2007. Crude oil compounds, including polycyclic aromatic hydrocarbons (PAHs), pose significant environmental damages due to their wide distribution, persistence, high toxicity, mutagenicity, and carcinogenicity. Microbial community of Sinduri beach sediments samples was analyzed by metagenomic data with 16S rRNA gene amplicons. Three phyla (Proteobacteria, Firmicutes, and Bacteroidetes) accounted for approximately ≥93.0% of the total phyla based on metagenomic analysis. Proteobacteria was the dominant phylum in Sinduri beach sediments. Cultivable bacteria were isolated from PAH-enriched cultures, and bacterial diversity was investigated through performing culture characterization followed by molecular biology methods. Sixty-seven isolates were obtained, comprising representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, and Bacteroidetes. PAH catabolism genes, such as naphthalene dioxygenase (NDO) and aromatic ring hydroxylating dioxygenase (ARHDO), were used as genetic markers to assess biodegradation of PAHs in the cultivable bacteria. The ability to degrade PAHs was demonstrated by monitoring the removal of PAHs using a gas chromatography mass spectrometer. Overall, various PAH-degrading bacteria were widely present in Sinduri beach sediments and generally reflected the restored microbial community. Among them, Cobetia marina, Rhodococcus soli, and Pseudoalteromonas agarivorans were found to be significant in degradation of PAHs. This large collection of PAH-degrading strains represents a valuable resource for studies investigating mechanisms of PAH degradation and bioremediation in oil contaminated coastal environment, elsewhere.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biodiversidade , Dioxigenases/genética , Dioxigenases/metabolismo , Sedimentos Geológicos/análise , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Petróleo/análise , Poluição por Petróleo/análise , RNA Ribossômico 16S/genética , República da Coreia
17.
Int J Syst Evol Microbiol ; 67(7): 2332-2336, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28777069

RESUMO

A novel Gram-stain-positive, irregularly rod-shaped actinomycete, designated strain 002-2T, was isolated from sand beach sediment collected from the Taean seashore, Republic of Korea. Cells were aerobic, oxidase-negative and catalase-positive. Colonies of cells were bright yellow, circular, smooth and convex. The diagnostic diamino acid in the cell wall was ll-diaminopimelic acid. The predominant menaquinone was MK-8(H4). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown phospholipid and two unknown amino phospholipids. The major fatty acids were iso-C16 : 0 and C17 : 1ω8c. The DNA G+C content was 68.8 mol%. 16S rRNA gene sequence analysis revealed that strain 002-2T belongs to the family Nocardioidaceae and formed a cluster with Nocardioides rubroscoriae Sco-A25T (98.1 % sequence similarity) and Nocardioides plantarum NCIMB 12834T (97.6 %). On the basis of the phenotypic and phylogenetic data, strain 002-2T (=KCTC 39838T=DSM 103718T) is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides litoris sp. nov. is proposed.


Assuntos
Actinomycetales/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Amoterapia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Arch Environ Contam Toxicol ; 73(1): 93-102, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28695253

RESUMO

Approximately 10,900 t of crude oil was released 10 km off the west coast of Korea after the collision between the oil tanker Hebei Spirit and a barge carrying a crane in December 2007. To assess the areal extent and temporal trends of PAH contamination, 428 sediment samples were collected from December 2007 through May 2015 for PAH analysis. Sedimentary PAH concentrations measured immediately after the spill ranged from 3.2 to 71,200 ng g-1, with a mean of 3800 ng g-1. Increases in PAH concentrations were observed at stations 7-23, which were heavily oiled due to tidal currents and northwesterly wind that transported the spilled oil to these locations. Mean and maximum PAH concentrations decreased drastically from 3800 to 88.5 and 71,200 to 1700 ng g-1, respectively, 4 months after the spill. PAH concentrations highly fluctuated until September 2008 and then decreased slowly to background levels. Reduction rate was much faster at the sandy beaches (k = 0.016) than in the muddy sites (k = 0.001). In muddy sediments, low attenuation due to low flushing rate in the mostly anaerobic sediment possibly contributed the persistence of PAHs. By May 2015 (~7.5 years after the spill), mean and maximum PAH concentrations decreased by 54 and 481 times, respectively, compared with the peak concentrations. The sedimentary PAH concentrations in the monitoring area have returned to regional background levels.


Assuntos
Monitoramento Ambiental , Poluição por Petróleo/análise , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , República da Coreia
19.
Artigo em Inglês | MEDLINE | ID: mdl-28274761

RESUMO

Crude oils from distinct geographical regions have distinct chemical compositions, and, as a result, their toxicity may be different. However, developmental toxicity of crude oils derived from different geographical regions has not been extensively characterized. In this study, flounder embryos were separately exposed to effluents contaminated by three crude oils including: Basrah Light (BLO), Pyrenees (PCO), and Sakhalin Vityaz (SVO), in addition to a processed fuel oil (MFO-380), to measure developmental toxicity and for gene expressions. Each oil possessed a distinct chemical composition. Edema defect was highest in embryos exposed to PCO and MFO-380 that both have a greater fraction of three-ring PAHs (33% and 22%, respectively) compared to BLO and SVO. Observed caudal fin defects were higher in embryos exposed to SVO and MFO-380, which are both dominated by naphthalenes (81% and 52%, respectively). CYP1A gene expressions were also highest in embryos exposed to SVO and MFO-380. Higher incidence of cardiotoxicity and lower nkx 2.5 expression were detected in embryos exposed to PCO. Unique gene expression profiles were observed in embryos exposed to crude oils with distinct compositions. This study demonstrates that crude oils of different geographical origins with different compositional characteristics induce developmental toxicity to different degrees.


Assuntos
Proteínas de Peixes/metabolismo , Linguado/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Petróleo/toxicidade , Teratogênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Nadadeiras de Animais/anormalidades , Nadadeiras de Animais/efeitos dos fármacos , Nadadeiras de Animais/embriologia , Animais , Aquicultura , Austrália , Família 1 do Citocromo P450/química , Família 1 do Citocromo P450/genética , Família 1 do Citocromo P450/metabolismo , Proteínas de Peixes/agonistas , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/genética , Linguado/anormalidades , Linguado/metabolismo , Óleos Combustíveis/análise , Óleos Combustíveis/toxicidade , Perfilação da Expressão Gênica , Coração/efeitos dos fármacos , Coração/embriologia , Proteína Homeobox Nkx-2.5/antagonistas & inibidores , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Iraque , Naftalenos/análise , Naftalenos/toxicidade , Petróleo/análise , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Federação Russa , Teratogênicos/análise , Teratogênicos/química , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-28257923

RESUMO

To determine and compare the toxic effects of Iranian heavy crude oil (IHCO) on the embryonic development of two fish species, we examined transcriptome profiles using RNA-seq. The assembled contigs were 66,070 unigenes in olive flounder embryos and 76,498 unigenes in spotted seabass embryos. In the differential gene expression (DEG) profiles, olive flounder embryos showed different up- and down-regulated patterns than spotted seabass embryos in response to fresh IHCO (FIHCO) and weathered IHCO (WIHCO). In this work, we categorized DEG profiles into six pathways: ribosome, oxidative phosphorylation, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cardiac muscle contraction, validating the expression patterns of 13 DEGs using real-time quantitative RT-PCR. The expression of the CYP1A, CYP1B1, and CYP1C1 genes in spotted seabass embryos was higher than in olive flounder embryos, whereas genes related to cell processing, development, and the immune system showed the opposite trend. Orthologous gene cluster analysis showed that olive flounder embryos were sensitive (fold change of genes with cutoff P<0.05) to both FIHCO and WIHCO, but spotted seabass embryos exhibited higher sensitivity to WIHCO than FIHCO, indicating that species-specific differences are likely to be reflected in population levels after oil spills. Overall, our study provides new insight on the different embryonic susceptibilities of two marine fish species to FIHCO and WIHCO and a better understanding of the underlying molecular mechanisms via RNA-seq and DEGs.


Assuntos
Bass/embriologia , Linguado/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Petróleo/toxicidade , Teratogênese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Aquicultura , Bass/metabolismo , Análise por Conglomerados , Biologia Computacional , Família 1 do Citocromo P450/química , Família 1 do Citocromo P450/genética , Família 1 do Citocromo P450/metabolismo , Resistência a Medicamentos , Proteínas de Peixes/agonistas , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguado/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Poluição por Petróleo/efeitos adversos , RNA Mensageiro/metabolismo , Distribuição Aleatória , República da Coreia , Especificidade da Espécie , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA