Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(19): e2215590120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126693

RESUMO

Chronic stress induces depression- and anxiety-related behaviors, which are common mental disorders accompanied not only by dysfunction of the brain but also of the intestine. Activating transcription factor 4 (ATF4) is a stress-induced gene, and we previously show that it is important for gut functions; however, the contribution of the intestinal ATF4 to stress-related behaviors is not known. Here, we show that chronic stress inhibits the expression of ATF4 in gut epithelial cells. ATF4 overexpression in the colon relieves stress-related behavioral alterations in male mice, as measured by open-field test, elevated plus-maze test, and tail suspension test, whereas intestine-specific ATF4 knockout induces stress-related behavioral alterations in male mice. Furthermore, glutamatergic neurons are inhibited in the paraventricular thalamus (PVT) of two strains of intestinal ATF4-deficient mice, and selective activation of these neurons alleviates stress-related behavioral alterations in intestinal ATF4-deficient mice. The highly expressed gut-secreted peptide trefoil factor 3 (TFF3) is chosen from RNA-Seq data from ATF4 deletion mice and demonstrated decreased in gut epithelial cells, which is directly regulated by ATF4. Injection of TFF3 reverses stress-related behaviors in ATF4 knockout mice, and the beneficial effects of TFF3 are blocked by inhibiting PVT glutamatergic neurons using DREADDs. In summary, this study demonstrates the function of ATF4 in the gut-brain regulation of stress-related behavioral alterations, via TFF3 modulating PVT neural activity. This research provides evidence of gut signals regulating stress-related behavioral alterations and identifies possible drug targets for the treatment of stress-related behavioral disorders.


Assuntos
Fator 4 Ativador da Transcrição , Tálamo , Masculino , Animais , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Tálamo/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Colo/metabolismo
2.
Commun Biol ; 6(1): 50, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641530

RESUMO

Psychiatric disorders, such as anxiety, are associated with inflammatory bowel disease (IBD), however, the neural mechanisms regulating this comorbidity are unknown. Here, we show that hypothalamic agouti-related protein (AgRP) neuronal activity is suppressed under chronic restraint stress (CRS), a condition known to increase anxiety and colitis susceptibility. Consistently, chemogenic activation or inhibition of AgRP neurons reverses or mimics CRS-induced increase of anxiety-like behaviors and colitis susceptibility, respectively. Furthermore, CRS inhibits AgRP neuronal activity by suppressing the expression of c-Jun. Moreover, overexpression of c-Jun in these neurons protects against the CRS-induced effects, and knockdown of c-Jun in AgRP neurons (c-Jun∆AgRP) promotes anxiety and colitis susceptibility. Finally, the levels of secreted protein thrombospondin 1 (THBS1) are negatively associated with increased anxiety and colitis, and supplementing recombinant THBS1 rescues colitis susceptibility in c-Jun∆AgRP mice. Taken together, these results reveal critical roles of hypothalamic AgRP neuron-derived c-Jun in orchestrating stress-induced anxiety and colitis susceptibility.


Assuntos
Colite , Hipotálamo , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Ansiedade/etiologia , Neurônios/fisiologia , Colite/genética , Colite/metabolismo
3.
Mol Metab ; 42: 101084, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971298

RESUMO

OBJECTIVE: Although the hypothalamus is crucial for peripheral metabolism control, the signals in specific neurons involved remain poorly understood. The aim of our current study was to explore the role of the hypothalamic gene mothers against decapentaplegic homolog 7 (Smad7) in peripheral glucose disorders. METHODS: We studied glucose metabolism in high-fat diet (HFD)-fed mice and middle-aged mice with Cre-mediated recombination causing 1) overexpression of Smad7 in hypothalamic proopiomelanocortin (POMC) neurons, 2) deletion of Smad7 in POMC neurons, and 3) overexpression of protein kinase B (AKT) in arcuate nucleus (ARC) in Smad7 overexpressed mice. Intracerebroventricular (ICV) cannulation of insulin was used to test the hypothalamic insulin sensitivity in the mice. Hypothalamic primary neurons were used to investigate the mechanism of Smad7 regulating hypothalamic insulin signaling. RESULTS: We found that Smad7 expression was increased in POMC neurons in the hypothalamic ARC of HFD-fed or middle-aged mice. Furthermore, overexpression of Smad7 in POMC neurons disrupted the glucose balance, and deletion of Smad7 in POMC neurons prevented diet- or age-induced glucose disorders, which was likely to be independent of changes in body weight or food intake. Moreover, the effect of Smad7 was reversed by overexpression of AKT in the ARC. Finally, Smad7 decreased AKT phosphorylation by activating protein phosphatase 1c in hypothalamic primary neurons. CONCLUSIONS: Our results demonstrated that an excess of central Smad7 in POMC neurons disrupts glucose balance by attenuating hypothalamic insulin signaling. In addition, we found that this regulation was mediated by the activity of protein phosphatase 1c.


Assuntos
Glucose/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteína Smad7/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína Smad7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA