Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 871: 162081, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754325

RESUMO

Phosphorus recovery from water and the subsequent reuse of its products can solve both water eutrophication and phosphorus resource waste issues. However, the potential use of the final recovered products as crop phosphorus fertilizers and the transformation of phosphorus fractions in soils have rarely been analyzed. In this study, the effects of a phosphorus recovery product (w-HC/CSH/P) obtained from our previous phosphorus recovery study on pepper growth were investigated. The association between soil phosphorus fraction transformation and the microbial co-occurrence network was investigated using high-throughput sequencing. The results showed that amendment with w-HC/CSH/P could promote the growth and chlorophyll content of pepper, which exhibited high phosphorus fertilizer efficiency. In addition, applying w-HC/CSH/P in soils could increase the microbial alpha-diversity during pepper cultivation and induce changes in the microbial community, leading to an increase in the relative abundance of Povalibacter, Lysobacter, and GP10 and a decrease in GP17. The proportion of Resin-P and NaHCO3-Po decreased, whereas that of NaOH-Po increased during pepper cultivation. psOTU331 (g_Latescibacteria), psOTU377 (g_Lysobacter), and psOTU461 (g_Pseudoxanthomonas) were the key microorganisms driving the transformation of phosphorus fractionation in the microbial co-occurrence network. Latescibacteria and Lysobacter were closely correlated with the transformation of NaHCO3-Po to NaOH-Po, and Pseudoxanthomonas was significantly correlated with a decrease in Resin-P. These observations highlight the potential of phosphorus recovery products as fertilizer for pepper and provide new insights into the transformation of phosphorus fractions corresponding to the microbiome in soils.


Assuntos
Fósforo , Solo , Fertilizantes , Hidróxido de Sódio , Bactérias , Microbiologia do Solo , Água
2.
Chemosphere ; 303(Pt 2): 135095, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35618058

RESUMO

Heavy metal pollution is consistently a critical global issue, and bioremediation is regarded as one of the most promising approaches. In this work, the biosorption characteristics of Cd(II), Pb(II), Cu(II) and Zn(II) from aqueous solutions using three phosphorus-accumulating organisms (PAOs) biomasses, Ochrobactrum cicero (PAB-006), Stenotrophomonas maltophilia (PAB-009), and Pseudomonas putida (PAB-0031), as biosorbents were investigated. Results indicated that the equilibrium biosorption capacities of biosorbents to heavy metal ions were sensitive to the solution pH, and increased with increasing pH values. The experimental data of Cd(II), Pb(II), Cu(II) and Zn(II) biosorption were in good agreement with the Pseudo-second-order, Redlich-Peterson and Temkin models, implying that the biosorption was a hybrid chemical reaction-biosorption process. In addition, the theoretical maximum biosorption capacities of Cd(II), Pb(II), Cu(II) and Zn(II) were calculated to be 67.84, 80.23, 50.56 and 63.07 mg/g for PAB-006, 59.99, 87.71, 39.26 and 64.00 mg/g for PAB-009 and 68.31, 85.43, 38.97 and 62.85 mg/g for PAB-031, respectively (pH = 5.0 ± 0.1, T = 25 °C), according to the parameters of the Langmuir model. Moreover, ionic strength had negligible influences or slight promoting effects, while humic acid exhibited positive effects on the removal of heavy metals. Further, PABs were stable and displayed excellent reusability. Characterization techniques of FTIR and XPS revealed that surface complexation, ion exchange, hydrogen bonding and electrostatic interaction were the main mechanisms involved in the biosorption process. In summary, the biosorbent PABs possessed high biosorption performance with excellent reusability, and which hold the great application prospect in the treatment of heavy metal contaminated water.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Biomassa , Cádmio , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Metais Pesados/química , Fósforo , Água , Poluentes Químicos da Água/análise , Zinco
3.
Ecotoxicol Environ Saf ; 226: 112863, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619478

RESUMO

Heavy metal contamination poses a serious environmental hazard, globally necessitating intricate attention. Heavy metals can cause deleterious health hazards to humans and other living organisms even at low concentrations. Environmental biotechnologists and eco-toxicologists have rigorously assessed a plethora of bioremediation mechanisms that can hamper the toxic outcomes and the molecular basis for rejuvenating the hazardous impacts, optimistically. Environmental impact assessment and restoration of native and positive scenario has compelled biological management in ensuring safety replenishment in polluted realms often hindered by heavy metal toxicity. Copious treatment modalities have been corroborated to mitigate the detrimental effects to remove heavy metals from polluted sites. In particular, Biological-based treatment methods are of great attention in the metal removal sector due to their high efficiency at low metal concentrations, ecofriendly nature, and cost-effectiveness. Due to rapid multiplication and growth rates, bacteria having metal resistance are advocated for metal removal applications. Evolutionary implications of coping with heavy metals toxicity have redressed bacterial adaptive/resistance strategies related to physiological and cross-protective mechanisms. Ample reviews have been reported for the bacterial adaptive strategies to cope with heavy metal toxicity. Nevertheless, a holistic review summarizing the redox reactions that address the cross-reactivity mechanisms between metallothionein synthesis, extracellular polysaccharides production, siderophore production, and efflux systems of metal resistant bacteria are scarce. Molecular dissection of how bacteria adapt themselves to metal toxicity can augment novel and innovative technologies for efficient detoxification, removal, and combat the restorative difficulties for stress alleviations. The present comprehensive compilation addresses the identification of newer methodologies, summarizing the prevailing strategies of adaptive/resistance mechanisms in bacterial bioremediation. Further pitfalls and respective future directions are enumerated in invigorating effective bioremediation technologies including overexpression studies and delivery systems. The analysis will aid in abridging the gap for limitations in heavy metal removal strategies and necessary cross-talk in elucidating the complex cascade of events in better bioremediation protocols.


Assuntos
Metais Pesados , Adaptação Fisiológica , Adaptação Psicológica , Bactérias , Biodegradação Ambiental , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade
4.
Front Plant Sci ; 12: 704985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305992

RESUMO

Ginkgo biloba is a pharmaceutical resource for terpenes and flavonoids. However, few insights discussed endophytes' role in Ginkgo, and whether genetic exchange happens between Ginkgo and endophytes remains unclear. Herein, functional gene profiles and repetitive sequences were analyzed to focus on these issues. A total of 25 endophyte strains were isolated from the Ginkgo root and distributed in 16 genera of 6 phyla. Significant morphological diversities lead to the diversity in the COG functional classification. KEGG mapping revealed that endophytic bacteria and fungi potentially synthesize chalcone, while endophytic fungi might also promote flavonoid derivatization. Both bacteria and fungi may facilitate the lignin synthesis. Aspergillus sp. Gbtc_1 exhibited the feasibility of regulating alcohols to lignans. Although Ginkgo and the endophytes have not observed the critical levopimaradiene synthase in ginkgolides synthesis, the upstream pathways of terpenoid precursors are likely intact. The MVK genes in Ginkgo may have alternative non-homologous copies or be compensated by endophytes in long-term symbiosis. Cellulomonas sp. Gbtc_1 became the only bacteria to harbor both MEP and MVA pathways. Endophytes may perform the mutual transformation of IPP and DMAPP in the root. Ginkgo and bacteria may lead to the synthesis and derivatization of the carotenoid pathway. The isoquinoline alkaloid biosynthesis seemed lost in the Ginkgo root community, but L-dopa is more probably converted into dopamine as an essential signal-transduction substance. So, endophytes may participate in the secondary metabolism of the Ginkgo in a shared or complementary manner. Moreover, a few endophytic sequences predicted as Ty3/Gypsy and Ty1/Copia superfamilies exhibited extremely high similarity to those of Ginkgo. CDSs in such endophytic LTR-RT sequences were also highly homologous to one Ginkgo CDS. Therefore, LTR-RTs may be a rare unit flowing between the Ginkgo host and endophytes to exchange genetic information. Collectively, this research effectively expanded the insight on the symbiotic relationship between the Ginkgo host and the endophytes in the root.

5.
Front Microbiol ; 9: 3087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619168

RESUMO

Introducing exogenous species into an environment is an effective method to strengthen ecological functions. The traits of the exogenous species and the indigenous communities, as well as the resistance and subsequent succession of the community to exogenous species, are not well-understood. Here, three different functional consortia were introduced into two extremely acidic systems, leaching heap (LH) and leaching solution (LS), derived from the Zijin copper mine in China. The results showed that the structures of both LS and LH communities were affected by the three consortia, but not all the structural changes were in line with variations of community function. Among the three consortia, only the complementary sulfur oxidizers greatly enhanced copper extraction efficiency of LS (by 50.42%). This demonstrated that functional niche novelty gave exogenous species an advantage to occupy an ecological niche in a complementary manner, thus leading to successful colonization. The resistance to, and subsequent succession by, exogenous organisms varied between the two indigenous communities. More specifically, the LS community with low community diversity and simple composition was susceptible to exogenous species, and the community structural changes of LS were both divergent and irreversible. In comparison, the LH community with greater community diversity and more complex composition was more resistant to exogenous species, with the community structures showing a convergent trend over time despite different species being introduced. Therefore, we propose that diverse communities compete for resources more intensely with exogenous species and resist their introduction, and that communities with complex composition are able to cope with exogenous disturbances.

6.
Bioresour Technol ; 102(7): 4697-702, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21316943

RESUMO

A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Mineração , Filogenia , Dióxido de Silício/química , Urânio/isolamento & purificação , Adsorção , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Análise por Conglomerados , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Análise de Sequência de DNA , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA