Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytomedicine ; 129: 155645, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38643714

RESUMO

BACKGROUND: Qing-Yi Recipe, a classic traditional Chinese medicine (TCM), is widely used for treating acute diseases of the abdomen, especially pancreatitis, the efficacy of which has been demonstrated in more than thirty clinical trials. However, the in-vivo pharmacodynamic material basis for this formula remains unclear. METHODS: A sensitive and accurate method for quantifying twenty-two potential bioactive constituents of Qing-Yi Recipe in biological samples was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and this method was fully validated. Then, the integrated pharmacokinetic properties of Qing-Yi Recipe and its major metabolites in rats were investigated using the post-listed granules at both dosages. Subsequently, tissue distributions of those constituents in nine organs (especially the pancreas) were determined, and the overall parameters between the two formulations were compared. RESULTS: Though the chemical profiles of the formulas varied across formulations, the overall exposure level was very similar, and baicalin, wogonoside, geniposide, rhein, costunolide, and paeoniflorin were the top six bioactive compounds in the circulation. All twenty-two natural products reached their first peak within 2 h, and several of them exhibited bimodal or multimodal patterns under the complicated transformation of metabolic enzymes, and the parameters of these products markedly changed compared with those of monomers. Diverse metabolites of emodin and baicalin/baicalein were detected in circulation and tissues, augmenting the in vivo forms of these compounds. Finally, the enrichment of tetrahydropalmatine and corydaline in the pancreas were observed and most compounds remained in the gastrointestinal system, providing a foundation basis for their potential regulatory effects on the gut microbiota as well as the intestinal functions. CONCLUSION: Herein, the pharmacokinetic properties and tissue distribution of multiple potential active constituents in Qing-Yi Recipe were investigated at two dosages, providing a pharmacodynamic material basis of Qing-Yi Recipe for the first time. This investigation is expected to provide a new perspective and reference for future studies on the physiological disposition and potential pharmacodynamic basis of traditional Chinese medicine to treat acute abdomen diseases.

2.
Pharm Biol ; 61(1): 927-937, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37323024

RESUMO

CONTEXT: Qingyi granules can be used to effectively treat patients with severe acute pancreatitis (SAP). OBJECTIVE: To elucidate the role of gut microbiota-mediated metabolism in the therapeutic effects of Qingyi granules. MATERIALS AND METHODS: Sprague-Dawley rats were grouped into the sham operation, SAP model, Qingyi granule intervention (Q, 1.8 g/kg) and emodin intervention (E, 50 mg/kg) groups and observed for 24 h. H&E staining and ELISA were used for histopathological analysis and serum enzyme and cytokine assays. 16S rDNA sequencing and UHPLC-HRMS were used for gut microbiota analysis and untargeted metabolomics. RESULTS: In SAP rats, Qingyi granules decreased the pancreatic pathological score (Q, 7.4 ± 1.14; SAP, 11.6 ± 1.14, p < 0.01); serum amylase (Q, 121.2 ± 6.7; SAP, 144.3 ± 8.86, p < 0.05), lipase (Q, 566 ± 20.34; SAP, 656.7 ± 29.32, p < 0.01), and diamineoxidase (Q, 492.8 ± 26.08; SAP, 566.1 ± 26.83, p < 0.05) activities; and IL-1ß (Q, 29.48 ± 0.88; SAP, 36.17 ± 1.88, p < 0.01), IL-6 (Q, 112.2 ± 3.57; SAP, 128.9 ± 9.09, p < 0.05) and TNF-α (Q, 215.3 ± 8.67; SAP, 266.4 ± 28.03, p < 0.05) levels. SAP induced Helicobacter and Lactobacillus overgrowth and suppressed Romboutsia and Allobaculum growth and caused aberrations in bacterial metabolites, which were partly reversed by Qingyi granules. DISCUSSION AND CONCLUSIONS: Qingyi granules can modulate the gut microbiota and metabolic abnormalities to ameliorate SAP. Multi-omics approaches allow systematic study of the pharmacological mechanisms of compound prescriptions for critical illnesses.


Assuntos
Microbioma Gastrointestinal , Pancreatite , Ratos , Animais , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Ratos Sprague-Dawley , Doença Aguda
3.
Front Cell Infect Microbiol ; 12: 838340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811665

RESUMO

Impaired intestinal barrier function and gut microbiota dysbiosis are believed to be related to exacerbation of acute pancreatitis (AP). As a bacterial cell wall peptidoglycan component, diaminopimelic acid (DAP) is a specific ligand of NOD1 that regulates the NOD1/RIP2/NF-kB signaling pathway. Here, we investigated the role of DAP in the crosstalk between the gut microbiota and pancreas during the occurrence of AP. Upregulation of NOD1/RIP2/NF-kB and elevated serum DAP levels were found in severe AP (SAP) model rats. The accumulation of DAP in SAP patients corroborated its ability to serve as an indicator of disease severity. Subsequently, SAP rats were treated with oral administration of the traditional Chinese medicine Qingyi Keli (QYKL) as well as neomycin, which can widely eliminate DAP-containing bacteria. Both QYKL and neomycin intervention ameliorated intestinal and pancreatic damage and systemic inflammation in SAP rats. Through 16S rDNA sequencing, we found that QYKL could rehabilitate the gut microbiota structure and selectively inhibit the overgrowth of enteric bacteria, such as Helicobacter and Lactobacillus, in SAP rats without affecting some protective strains, including Romboutsia and Allobaculum. Interestingly, we demonstrated that the decrease in serum DAP was accompanied by suppression of the NOD1/RIP2/NF-kB signaling pathway in both the intestine and pancreas of the two intervention groups. Taken together, these results suggested that the gut microbiota-DAP-NOD1/RIP2 signaling pathway might play a critical role in the progression of AP and that SAP could be alleviated via intervention in the signaling pathway. Our work provides new potential early warning indicators of SAP and targets for intervention.


Assuntos
Microbioma Gastrointestinal , Pancreatite , Doença Aguda , Animais , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Ácido Diaminopimélico/farmacologia , Microbioma Gastrointestinal/fisiologia , NF-kappa B/metabolismo , Neomicina , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Ratos , Transdução de Sinais
4.
J Agric Food Chem ; 68(43): 12164-12172, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33074673

RESUMO

Fresh green tea (GT) is commonly considered to have better sensory flavor and higher commercial value than long-term-stored GT; however, the chemical variations during storage are unclear. In this study, the chemical profiles of stored GT were surveyed among time-series samples from 0 to 19 months using a nontargeted metabolomics method. Seven N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased from 0.022 ± 0.019 to 3.212 ± 0.057 mg/g within 19 months (correlation coefficients with storage duration ranging from 0.936 to 0.965), and they were the most significantly increased compounds among the 127 identified compounds. Two representative EPSFs (R-EGCG-cThea and S-EGCG-cThea) possess potential anti-inflammatory properties by suppressing the expression, phosphorylation, and nuclear translocation of nuclear factor kappa-B (NF-κB) p65 in lipopolysaccharide-stimulated macrophages based on western blotting and immunofluorescence results. In conclusion, EPSFs were found to be marker compounds for stored GT and showed potential anti-inflammatory activity by regulating the NF-κB signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Camellia sinensis/química , Flavonoides/farmacologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pirrolidinonas/farmacologia , Animais , Anti-Inflamatórios/química , Flavonoides/química , Armazenamento de Alimentos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia , Extratos Vegetais/química , Folhas de Planta , Pirrolidinonas/química , Células RAW 264.7 , Fatores de Tempo
5.
Neural Regen Res ; 14(7): 1152-1157, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30804240

RESUMO

Stem cell transplantation has brought new hope for the treatment of neurological diseases. The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells. Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors, the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located. Accordingly, the optimal microenvironment for inducing stem cell differentiation is a hot topic. EGb761 is extracted from the leaves of the Ginkgo biloba tree. It is used worldwide and is becoming one of the focuses of stem cell research. Studies have shown that EGb761 can antagonize oxygen free radicals, stabilize cell membranes, promote neurogenesis and synaptogenesis, increase the level of brain-derived neurotrophic factors, and replicate the environment required during the differentiation of stem cells into nerve cells. This offers the possibility of using EGb761 to induce the differentiation of stem cells, facilitating stem cell transplantation. To provide a comprehensive reference for the future application of EGb761 in stem cell therapy, we reviewed studies investigating the influence of EGb761 on stem cells. These started with the composition and neuropharmacology of EGb761, and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.

6.
Stem Cell Res Ther ; 9(1): 66, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523182

RESUMO

Recent studies have suggested that the regulation of endogenous neural stem cells (NSCs) or transplanting of exogenous nerve cells are the newest and most promising methods for the treatment of dementia and other neurological diseases. The special location and limited number of endogenous NSCs, however, restrict their clinical application. The success in directional differentiation of exogenous stem cells from other tissue sources into neural cells has provided a novel source for NSCs. Study on the relative mechanisms is still at the preliminary stage. Currently the induction methods include: 1) cell growth factor induction; 2) chemical induction; 3) combined growth factor-chemical induction; or 4) other induction methods such as traumatic brain tissue homogenate, gene transfection, traditional Chinese medicine, and coculture induction. Cerebrospinal fluid (CSF), as a natural medium under physiological conditions, contains a variety of progrowth peptide factors that can promote the proliferation and differentiation of mesenchymal stromal cells (MSCs) into neural cells through the corresponding receptors on the cell surface. This suggests that CSF can not only nourish the nerve cells, but also become an effective and suitable inducer to increase the yield of NSCs. However, some other studies believed that CSF contained certain inhibitory components against the differentiation of primary stem cells into mature neural cells. Based on the above background, here we review the relative literature on the influence of the CSF on stem cells in order to provide a more comprehensive reference for the wide clinical application of NSCs in the future.


Assuntos
Técnicas de Reprogramação Celular/métodos , Líquido Cefalorraquidiano/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/líquido cefalorraquidiano , Transplante de Células-Tronco Mesenquimais/métodos , Doenças do Sistema Nervoso/terapia , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Neurais/citologia
7.
Cancer Res ; 73(16): 4992-5002, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23824744

RESUMO

Hepatocellular carcinoma has a poor prognosis due to its rapid development and early metastasis. In this report, we characterized the metabolic features of hepatocellular carcinoma using a nontargeted metabolic profiling strategy based on liquid chromatography-mass spectrometry. Fifty pairs of liver cancer samples and matched normal tissues were collected from patients having hepatocellular carcinoma, including tumor tissues, adjacent noncancerous tissues, and distal noncancerous tissues, and 105 metabolites were filtered and identified from the tissue metabolome. The principal metabolic alternations in HCC tumors included elevated glycolysis, gluconeogenesis, and ß-oxidation with reduced tricarboxylic acid cycle and Δ-12 desaturase. Furthermore, increased levels of glutathione and other antioxidative molecules, together with decreased levels of inflammatory-related polyunsaturated fatty acids and phospholipase A2, were observed. Differential metabolite levels in tissues were tested in 298 serum specimens from patients with chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Betaine and propionylcarnitine were confirmed to confer good diagnostic potential to distinguish hepatocellular carcinoma from chronic hepatitis and cirrhosis. External validation of cirrhosis and hepatocellular carcinoma serum specimens further showed that this combination biomarker is useful for diagnosis of hepatocellular carcinoma with a supplementary role to α-fetoprotein.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metaboloma/genética , Adulto , Idoso , Antioxidantes/metabolismo , Betaína/metabolismo , Carcinoma Hepatocelular/genética , Carnitina/análogos & derivados , Carnitina/genética , Carnitina/metabolismo , Ciclo do Ácido Cítrico , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Feminino , Gluconeogênese , Glutationa/genética , Glutationa/metabolismo , Glicólise , Hepatite Crônica/genética , Hepatite Crônica/metabolismo , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/genética , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Fosfolipases A2/genética , Fosfolipases A2/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-18762461

RESUMO

Xindi soft capsule is a traditional Chinese medicine preparation which consists of sea buckthorn flavonoids and sea buckthorn berry oil. In this study, a urinary metabonomics method based on the ultra-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC Q-TOF MS) was used to evaluate the efficacy and study the mechanism of traditional Chinese medicine preparation to blood stasis. With pattern recognition analysis (principal component analysis and partial least squares-discriminate analysis) of urinary metabolites, a clear separation of acute blood stasis model group and healthy control group was achieved, the dose groups were located between acute blood stasis model group and healthy control group showing a tendency of recovering to healthy control group, high dose and middle dose were more effective than low dose. Some significantly changed metabolites like cholic acid, phenylalanine and kynurenic acid have been found and identified and used to explain the mechanism. The work shows that the metabonomics method is a valuable tool in the research mechanism of traditional Chinese medicine.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hemodinâmica/efeitos dos fármacos , Metabolômica , Animais , Biomarcadores/urina , Doenças Cardiovasculares/urina , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Hemorreologia , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
9.
Artigo em Inglês | MEDLINE | ID: mdl-18556250

RESUMO

Abnormal savda is a special symptom in Uigur medicine. The understanding of its metabolic origins is of great importance for the subsequent treatment. Here, a metabonomic study of this symptom was carried out using LC-MS based human serum metabolic profiling. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) was used for the classification and prediction of abnormal savda. Potential biomarkers from metabonomics were also identified for a metabolic understanding of abnormal savda. As a result, our OSC-PLS-DA model had a satisfactory ability for separation and prediction of abnormal savda. The potential biomarkers including bilirubin, bile acids, tryptophan, phenylalanine and lyso-phosphatidylcholines indicated that abnormal savda could be related to some abnormal metabolisms within the body, including energy metabolism, absorption of nutrition, metabolism of lecithin on cell membrane, etc. To the best of our knowledge, this is the first study of abnormal savda based on serum metabolic profiling. The LC/MS-based metabonomic platform could be a powerful tool for the classification of symptoms and for the development of this traditional medicine into an evidence-based one.


Assuntos
Cromatografia Líquida/métodos , Biologia Computacional/métodos , Espectrometria de Massas/métodos , Medicina Tradicional Chinesa , Metabolismo , Asma/metabolismo , Biomarcadores/sangue , Doença das Coronárias/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gastrite/metabolismo , Humanos , Falência Renal Crônica/metabolismo , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA