Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21781, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311559

RESUMO

Yin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids. Consistent with this finding, YY1 expression is induced in differentiated VSMCs in response to serum stimulation. To determine the underlying molecular mechanisms, we found that YY1 suppresses the transcription of CArG box-dependent SMC-specific genes including SM22α, SMα-actin and SMMHC. Interestingly, YY1 suppresses the transcriptional activity of the SM22α promoter by hindering the binding of serum response factor (SRF) to the proximal CArG box. YY1 also suppresses the transcription and the transactivation of myocardin (MYOCD), a master regulator for SMC-specific gene transcription by binding to SRF to form the MYOCD/SRF/CArG box triad (known as the ternary complex). Mechanistically, YY1 directly interacts with MYOCD to competitively displace MYOCD from SRF. This is the first evidence showing that YY1 inhibits SMC differentiation by directly targeting MYOCD. These findings provide new mechanistic insights into the regulatory mechanisms that govern SMC phenotypic modulation in the pathogenesis of vascular diseases.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Transcrição YY1/metabolismo , Animais , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
2.
J Biol Chem ; 280(41): 34985-96, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16049007

RESUMO

Maspin, a novel serine protease inhibitor, suppresses tumor progression in several cancer models, including an in vivo model for prostate cancer bone metastasis. However, the molecular mechanism of maspin remains illusive, primarily because its molecular targets are unknown. To this end, we used a full-length maspin cDNA bait to screen against both a primary prostate tumor cDNA prey library and a HeLa cDNA prey library by the yeast two-hybrid method. We found that heat shock protein 90, glutathione S-transferase (GST), and heat shock protein 70 interacted with maspin with the highest frequencies. We confirmed the maspin/GST interaction using purified proteins, human epithelial cell lines, and human prostate tissues. A maspin variant that has a point mutation of Arg(340) to Ala (Mas(R340A)) showed a significantly decreased affinity for GST. Although purified maspin had no effect on the activity of purified GST in vitro, intracellular interaction between endogenous maspin and GST correlated with an elevated total GST activity in both MDA-MB-435- and DU145-derived stably transfected cells. Consistently, tumor cells treated with purified wild type maspin, but not Mas(R340A), enhanced cellular GST activity. Maspin expression in cancer cell lines also correlated with decreased basal levels of reactive oxygen species (ROS). Furthermore, H(2)O(2) treatment not only induced GST expression but also increased intracellular maspin/GST interaction, which was inversely correlated with the level of ROS generation. Conversely, maspin knockdown by small interfering RNA increased the basal, as well as H(2)O(2)-induced, ROS generation. Furthermore, the maspin effect on ROS generation was completely abolished by a GST inhibitor, indicating an essential role of GST in maspin-mediated cellular response to oxidative stress. Consistently, oxidative stress-induced vascular endothelial growth factor A expression was significantly inhibited in maspin-expressing cells. Together, our data suggest a new mechanism by which maspin, through its direct interaction with GST, may inhibit oxidative stress-induced ROS generation and vascular endothelial growth factor A induction, thus preventing further adverse effects on tumor genetics and stromal reactivity.


Assuntos
Genes Supressores de Tumor/fisiologia , Glutationa Transferase/metabolismo , Estresse Oxidativo , Serpinas/fisiologia , Alanina/química , Arginina/química , Western Blotting , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Separação Celular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Imunoprecipitação , Masculino , Microscopia de Fluorescência , Metástase Neoplásica , Plasmídeos/metabolismo , Mutação Puntual , Neoplasias da Próstata/patologia , Ligação Proteica , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serpinas/química , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA