Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theriogenology ; 180: 72-81, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953351

RESUMO

Benzo(a)pyrene (BaP) is a toxic substance that people are often exposed to. It has serious harmful effects on the body, and has a destructive effect on oocytes and cumulus cells. Here, we found that paeoniflorin (Pae), a traditional Chinese medicine monomer with antioxidant effects, decreased BaP-induced meiotic failure by increasing the activity of the Sonic hedgehog (SHH) signaling pathway and reducing the level of reactive oxygen species (ROS). We found that the in vitro maturation (IVM) rate was significantly increased (P < 0.05) in the 0.1 µM Pae and BaP (co-treatment) group compared with BaP group due to reduced ROS levels and increased mitochondrial membrane potential (ΔΨ) and ATP content. The mRNA expression levels of oocyte maturation and cumulus cell expansion-related genes were also significantly higher in the co-treatment group. To demonstrate the quality of oocytes, the development capacity of parthenogenetically activated (PA) and in vitro fertilization (IVF) embryos from different treatment groups oocytes were determined.The blastocyst formation rate was significantly higher in PA and IVF embryos derived from oocytes in the co-treatment group than in those derived from oocytes in the BaP group. To further confirm that the SHH signaling pathway was involved in causing these effects of Pae, we treated oocytes with Pae and BaP in the presence or absence of cyclopamine (Cy), an inhibitor of this pathway. Cy abolished the effects of Pae in BaP treated porcine oocytes. In conclusion, Pae improves the IVM capacity of BaP-treated porcine oocytes by activating the SHH signaling pathway, inhibiting ROS production, and increasing ΔΨ.


Assuntos
Proteínas Hedgehog , Técnicas de Maturação in Vitro de Oócitos , Animais , Benzo(a)pireno/toxicidade , Blastocisto , Desenvolvimento Embrionário , Glucosídeos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Monoterpenos , Oócitos , Espécies Reativas de Oxigênio , Transdução de Sinais , Suínos
2.
Environ Toxicol ; 36(4): 586-597, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33236476

RESUMO

Panax ginseng, a functional food, has been widely used as an edible nourishment and medicinal supplement. Ginsenoside Rb1 is a major bioactive ingredient of ginseng, which shows very specific anti-apoptosis and anti-oxidant activities. Methylglyoxal (MGO) is one of intermediate products of glucose metabolism, which is absorbed easily from high sugar foods or carbonated beverages. It may involve in a variety of detrimental processes in vivo. However, it has not been fully explored the effects of ginsenoside Rb1 on MGO-induced oocytes damage. This study found that MGO-induced DNA damage and mitochondrial dysfunction result in the failure of porcine oocytes maturation and low in vitro development capacity of parthenogenetic activation (PA) and in vitro fertilization (IVF) embryos. Conversely, Rb1 supplementation recovered the rate of maturation, and improved in vitro development capacity of PA and IVF embryos. Rb1 also provided porcine oocytes a lower level of reactive oxygen species production, higher level of ATP content and mitochondrial membrane potential, and stimulated pluripotency gene expression in blastocysts. The findings of this study reveal ginsenoside Rb1 protects porcine oocyte from the cytotoxicity effects of methylglyoxal and provides novel perspectives for the protection of reproduction system by functional food of ginseng.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Ginsenosídeos/farmacologia , Oócitos/efeitos dos fármacos , Partenogênese/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , Animais , Antioxidantes/metabolismo , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Dano ao DNA/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Panax/química , Espécies Reativas de Oxigênio/metabolismo , Suínos
3.
Theriogenology ; 157: 96-109, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32810794

RESUMO

Benzo(a)pyrene (BaP) is a pollutant and carcinogen derived from air pollution. It causes serious damage to reproductive system, especially ovary. Ginseng is always used in food and traditional medicine as a nutraceuticals or herbal medicine. Ginsenoside compound K (CK) is a major bioactive ingredient of ginseng, that shows very specific anti-apoptosis, anti-oxidant, and anti-inflammatory activities and thus, it protects cells from damage. The aim of this study was to investigate the effects of CK on the BaP-induced inhibition of the in vitro maturation of porcine oocytes and their subsequent embryonic development capacity. We found that supplementation with 10 µg mL-1 CK during in vitro maturation significantly increased maturation rate (P < 0.05) and the expression level of related genes after damage induced by 40 µM BaP treatment. In addition, reactive oxygen species (ROS) levels significantly decreased and ATP content and mitochondrial membrane potential (MMP) increased after CK supplementation (P < 0.05). The competence for embryonic development was improved by the induction of pluripotency gene expression and the inhibition of apoptosis after CK supplementation of BaP-treated oocytes. Supplementation with 10 µg mL-1 CK improved porcine oocyte maturation and subsequent embryonic development of parthenogenetic activation (33.01 vs. 20.92, P < 0.05) and in vitro fertilization (24.01 vs. 16.52, P < 0.05) by increasing antioxidant activity and improving mitochondrial function after BaP-induced damage.


Assuntos
Benzo(a)pireno , Ginsenosídeos , Animais , Benzo(a)pireno/toxicidade , Desenvolvimento Embrionário , Feminino , Ginsenosídeos/farmacologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos , Oogênese , Gravidez , Espécies Reativas de Oxigênio , Suínos
4.
J Vet Sci ; 8(4): 377-82, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17993752

RESUMO

Mesenchymal stem cells (MSCs) secrete a variety of neuroregulatory molecules, such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor, which upregulate tyrosine hydroxylase (TH) gene expression in PC12 cells. Enhancing TH gene expression is a critical step for treatment of Parkinson's disease (PD). The objective of this study was to assess the effects of co-culturing PC12 cells with MSCs from feline bone marrow on TH protein expression. We divided the study into three groups: an MSC group, a PC12 cell group, and the combined MSC + PC12 cell group (the co-culture group). All cells were cultured in DMEM-HG medium supplemented with 10% fetal bovine serum for three days. Thereafter, the cells were examined using western blot analysis and immunocytochemistry. In western blots, the co-culture group demonstrated a stronger signal at 60 kDa than the PC12 cell group (p < 0.001). TH was not expressed in the MSC group, either in western blot or immunocytochemistry. Thus, the MSCs of feline bone marrow can up-regulate TH expression in PC12 cells. This implies a new role for MSCs in the neurodegenerative disease process.


Assuntos
Gatos/fisiologia , Regulação Enzimológica da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células PC12/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Antígenos de Superfície/metabolismo , Western Blotting , Técnicas de Cultura de Células , Células Cultivadas , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Imuno-Histoquímica , Células-Tronco Mesenquimais/metabolismo , Microscopia de Contraste de Fase , Células PC12/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA