Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Sci Food Agric ; 103(2): 750-763, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36054758

RESUMO

BACKGROUND: N-Carbamoyl-aspartic acid (NCA) is a critical precursor for de novo biosynthesis of pyrimidine nucleotides. To investigate the cumulative effects of maternal supplementation with NCA on the productive performance, serum metabolites and intestinal microbiota of sows, 40 pregnant sows (∼day 80) were assigned into two groups: (1) the control (CON) and (2) treatment (NCA, 50 g t-1 NCA). RESULTS: Results showed that piglets from the NCA group had heavier birth weight than those in the CON group (P < 0.05). In addition, maternal supplementation with NCA decreased the backfat loss of sows during lactation (P < 0.05). Furthermore,16S-rRNA sequencing results revealed that maternal NCA supplementation decreased the abundance of Cellulosilyticum, Fournierella, Anaerovibrio, and Oribacterium genera of sows during late pregnancy (P < 0.05). Similarly, on the 14th day of lactation, maternal supplementation with NCA reduced the diversity of fecal microbes of sows as evidenced by significantly lower observed species, Chao1, and Ace indexes, and decreased the abundance of Lachnospire, Faecalibacterium, and Anaerovorax genera, while enriched the abundance of Catenisphaera (P < 0.05). Untargeted metabolomics showed that a total of 48 differentially abundant biomarkers were identified, which were mainly involved in metabolic pathways of arginine/proline metabolism, phenylalanine/tyrosine metabolism, and fatty acid biosynthesis, etc. CONCLUSION: Overall, the results indicated that NCA supplementation regulated intestinal microbial composition of sows and serum differential metabolites related to arginine, proline, phenylalanine, tyrosine, and fatty acids metabolism that may contribute to regulating the backfat loss of sows, and the birth weight and diarrhea rate of piglets. © 2022 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Suínos , Animais , Gravidez , Feminino , Ração Animal/análise , Colostro/química , Ácido Aspártico/análise , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Suplementos Nutricionais/análise , Peso ao Nascer , Dieta/veterinária , Lactação , Arginina/análise , Fenilalanina/análise , Tirosina/análise , Prolina/análise
2.
Vet Med Sci ; 7(4): 1347-1358, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33620158

RESUMO

The purpose of this study was to investigate the effects of adding Pennisetum purpureum (P. purpureum, also known as Napier grass or elephant grass) to the diets of late gestation on the antioxidant indexes, immune indexes and faecal microbiota of sows. At the 90 days of gestation, 300 healthy sows were randomly divided into three groups, and they received the basic commercial diet or added 5% P. purpureum and 10% P. purpureum, respectively. The experiment started from 90 days of gestation to parturition. The results showed that the total antioxidant capacity, immunoglobulins and serum equol concentrations of sows on 100 days of gestation and at parturition increased linearly (p < .05) with the increase of the content of P. purpureum in the gestation diet. The 5% P. purpureum increased the relative abundance of Bacteroidetes (p = .027) and Actinobacteria (p < .001) at phylum level, Coriobacteriaceae (p < .001) at family level and Prevotellaceae_UCG_001 (p = .004) at genus level, and decreased the relative abundance of Escherichia_Shigella (p < .001) at genus level. In summary, this study shows that the additive of P. purpureum can increase the concentration of serum equol, improve the antioxidant capacity and immune function of sow in late gestation. In addition, the additive of 5% P. purpureum in the diet might change the composition of intestinal microbiota of sows, particularly the relative abundance of Coriobacteriaceae (p < .001) increased.


Assuntos
Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Fezes/microbiologia , Imunidade Inata , Microbiota , Pennisetum/química , Prenhez/fisiologia , Sus scrofa/imunologia , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Imunidade Inata/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Gravidez , Prenhez/efeitos dos fármacos
3.
J Sci Food Agric ; 101(10): 4018-4032, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349941

RESUMO

BACKGROUND: As an enzymatic product of yeast, yeast-based nucleotide (YN) is rich in nucleotides. To test the effects of maternal dietary supplementation with YN during late pregnancy on placental nutrient transport and nutrient metabolism in neonatal piglets, 64 pregnant sows (day 85 ± 3) were assigned into two groups: (i) control (CON) and (ii) treatment (YN; 4 g kg-1 ). Blood, placenta and liver samples of neonates during delivery were collected. RESULTS: The results showed that maternal YN supplementation decreased stillbirth rate and intra-uterine growth restriction rate (P < 0.05). In addition, maternal YN supplementation increased total serum protein, albumin and total cholesterol (P < 0.05). Furthermore, in neonatal piglets in the YN group, both serum amino acidand nucleotide profiles were affected, as well as liver amino acid, and fatty acid profiles were regulated (P < 0.05). Moreover, maternal YN supplementation increased liver mRNA expression of SLC28A3, SLC29A1, SLC29A2, PC, PCK1, FBP1, SREBP1c, HSL and CYP7a1 of neonatal piglets (P < 0.05). Meanwhile, there was a decrease in placental gene expression of EAAT2, EAAT3, LAT1 and PAT1, as well as lower protein expression of peroxisome proliferator-activated receptor (PPAR)γ, AKT, phosphorylated-AKT, phosphorylated-mammalian target of rapamycin (mTOR) and Raptor, in the YN group (P < 0.05). CONCLUSION: Taken together, these results indicate that maternal YN supplementation regulates placental nutrient transport by regulating the mTOR complex 1-PPAR pathway, and affects the liver metabolism of nucleotides, amino acids and fatty acids in neonatal piglets, thereby improving the reproductive performance of sow to a certain extent. © 2020 Society of Chemical Industry.


Assuntos
Nucleotídeos/metabolismo , Gravidez/metabolismo , Saccharomyces cerevisiae/química , Natimorto/veterinária , Suínos/metabolismo , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Suplementos Nutricionais/análise , Ácidos Graxos/metabolismo , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Placenta/metabolismo , Reprodução , Saccharomyces cerevisiae/metabolismo , Suínos/genética , Suínos/crescimento & desenvolvimento
4.
Oxid Med Cell Longev ; 2020: 1241894, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802257

RESUMO

There is a bidirectional relationship between inflammatory bowel disease (IBD) and depression/anxiety. Emerging evidences indicate that the liver may be involved in microbiota-gut-brain axis. This experiment focused on the role of melatonin in regulating the gut microbiota and explores its mechanism on dextran sulphate sodium- (DSS-) induced neuroinflammation and liver injury. Long-term DSS-treatment increased lipopolysaccharide (LPS), proinflammation cytokines IL-1ß and TNF-α, and gut leak in rats, breaking blood-brain barrier and overactivated astrocytes and microglia. Ultimately, the rats showed depression-like behavior, including reduction of sucrose preference and central time in open field test and elevation of immobility time in a forced swimming test. Oral administration with melatonin alleviated neuroinflammation and depression-like behaviors. However, melatonin supplementation did not decrease the level of LPS but increase short-chain fatty acid (SCFA) production to protect DSS-induced neuroinflammation. Additionally, western blotting analysis suggested that signaling pathways farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF 15) in gut and apoptosis signal-regulating kinase 1 (ASK1) in the liver overactivated in DSS-treated rats, indicating liver metabolic disorder. Supplementation with melatonin markedly inhibited the activation of these two signaling pathways and its downstream p38. As for the gut microbiota, we found that immune response- and SCFA production-related microbiota, like Lactobacillus and Clostridium significantly increased, while bile salt hydrolase activity-related microbiota, like Streptococcus and Enterococcus, significantly decreased after melatonin supplementation. These altered microbiota were consistent with the alleviation of neuroinflammation and metabolic disorder. Taken together, our findings suggest melatonin contributes to reshape gut microbiota and improves inflammatory processes in the hippocampus (HPC) and metabolic disorders in the liver of DSS rats.


Assuntos
Depressores do Sistema Nervoso Central/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Inflamação/tratamento farmacológico , Melatonina/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Animais , Depressores do Sistema Nervoso Central/farmacologia , Masculino , Melatonina/farmacologia , Ratos
5.
Br J Nutr ; 123(5): 481-488, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31623699

RESUMO

The present study was conducted to evaluate the effects of glucose, soya oil or glutamine on jejunal morphology, protein metabolism and protein expression of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway in jejunal villus or crypt compartment of piglets. Forty-two 21 d-weaned piglets were randomly allotted to one of the three isoenergetic diets formulated with glucose, soya oil or glutamine for 28 d. On day 14 or 28, the proteins in crypt enterocytes were analysed with isobaric tags for relative and absolute quantification and proteins involved in mTORC1 signalling pathway in villus or crypt compartment cells were determined by Western blotting. Our results showed no significant differences (P > 0·05) in jejunal morphology among the three treatments on day 14 or 28. The differentially expressed proteins mainly took part in a few network pathways, including antimicrobial or inflammatory response, cell death and survival, digestive system development and function and carbohydrate metabolism. On day 14 or 28, there were higher protein expression of eukaryotic initiation factor-4E binding protein-1 in jejunal crypt compartment of piglets supplemented with glucose or glutamine compared with soya oil. On day 28, higher protein expression of phosphor-mTOR in crypt compartment was observed in piglets supplemented with glucose compared with the soya oil. In conclusion, the isoenergetic glucose, soya oil or glutamine did not affect the jejunal morphology of piglets; however, they had different effects on the protein metabolism in crypt compartment. Compared with soya oil, glucose or glutamine may be better energy supplies for enterocytes in jejunal crypt compartment.


Assuntos
Suplementos Nutricionais , Glucose/farmacologia , Glutamina/farmacologia , Óleo de Soja/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Enterócitos/metabolismo , Jejuno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Desmame
6.
Anim Sci J ; 90(9): 1239-1247, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31281994

RESUMO

This study was conducted to investigate the effects of different levels of dietary partial MEs and coated cysteamine (CC) supplementation on gut microbiota in finishing pigs. Results showed that whittling down dietary partial MEs (Cu, Fe, Zn, Mn) by 20% and 40% had little effect on the microbial diversity, community structure, and bacterial relative abundance in the ileum of finishing pigs. Supplementation with 1,600 mg/kg CC also had no obvious effect on the microbial diversity, community structure, and bacterial relative abundance in the finishing pig ileum when fed diets with a normal MEs level. However, the abundance of Peptostreptococcaceae, Pasteurella, and Pasteurella_aerogenes was higher, and the abundance of Actinobacillus_minor was lower in the 20% ME reduction diet treatment than that in the 20% ME reduction with 1,600 mg/kg CC diet group (p < 0.05). In conclusion, our results suggested that there is no obvious effect on gut microbiota when dietary partial MEs are reduced by 20% or 40%, which indicates the feasibility of reducing dietary partial MEs by 20% or 40% in finishing pigs. Supplementation with CC changed the relative abundance of some bacteria related to opportunistic pathogenicity in the finishing pig ileum when were fed a 20% ME reduction diet.


Assuntos
Cisteamina/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/microbiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Minerais , Suínos
7.
Biochem Biophys Res Commun ; 505(2): 624-630, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30278888

RESUMO

To investigate effects of Ca level varying with feeding time daily in sows during late pregnancy on placental lipid metabolism and transport in pigs, sixty pregnant sows were assigned to 3 groups: the CON group was fed low-Ca diet with 11.25 g CaCO3 at 0600 h and 1500 h, H-L group was fed low-Ca diet with 22.5 g CaCO3 at 0600 h and low-Ca diet at 1500 h, and L-H group was fed low-Ca diet at 0600 h and low-Ca diet with 22.5 g CaCO3 at 1500 h, respectively. Serum from sows and umbilical cord and placenta were collected during delivery. Results showed that, compared with the CON group, H-L feeding significantly increased maternal serum total triglyceride (TG) and umbilical serum high-density lipoprotein (HDL) (P < 0.05). The results showed that long chain fatty acid (FA) contents in placenta were significantly increased in H-L and L-H groups (P < 0.05). Experiments on genes involved in glycolipid metabolism showed that H-L or L-H feeding inhibited mRNA expression of GLUT3, GLUT4, FAS, FABP1, FABPpm, FAT/CD36, while activated the mRNA expression of FASD1, FASD2 and SCD in placenta (P < 0.05). In addition, experiments on genes involved in biological clock showed that L-H feeding sequence activated the mRNA expression of per1 and clock, while H-L and L-H feeding sequence inhibited mRNA expression of per2 in placenta (P < 0.05). It is concluded that maternal supplementation with Ca varying with feeding time daily during late pregnancy affects placental lipid metabolism and transport in pigs by regulating the mRNA expression related to lipid metabolism and the circadian clock.


Assuntos
Cálcio da Dieta/administração & dosagem , Metabolismo dos Lipídeos , Placenta/metabolismo , Animais , Transporte Biológico , Relógios Circadianos/genética , Ácidos Graxos/metabolismo , Feminino , Glicolipídeos/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Suínos
8.
J Zhejiang Univ Sci B ; 17(10): 752-762, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27704745

RESUMO

The goal of this study was to evaluate the effects of a mixture of yeast culture, cell wall hydrolysates, and yeast extracts (collectively "yeast products," YP) on the performance, intestinal physiology, and health of weaned piglets. A total of 90 piglets weaned at 21 d of age were blocked by body weight, sex, and litter and randomly assigned to one of three treatments for a 14-d feeding experiment, including (1) a basal diet (control), (2) 1.2 g/kg of YP, and (3) 20 mg/kg of colistin sulfate (CSE). No statistically significant differences were observed in average daily feed intake, average daily weight gain, or gain-to-feed ratio among CSE, YP, and control piglets. Increased prevalence of diarrhea was observed among piglets fed the YP diet, whereas diarrhea was less prevalent among those fed CSE. Duodenal and jejunal villus height and duodenal crypt depth were greater in the control group than they were in the YP or CSE groups. Intraepithelial lymphocytes (IEL) in the duodenal and jejunal villi were enhanced by YP, whereas IEL in the ileal villi were reduced in weaned piglets fed YP. Secretion of jejunal and ileal interleukin-10 (IL-10) was higher and intestinal and serum antioxidant indexes were affected by YP and CSE. In YP- and CSE-supplemented animals, serum D-lactate concentration and diamine oxidase (DAO) activity were both increased, and intestinal mRNA expressions of occludin and ZO-1 were reduced as compared to the control animals. In conclusion, YP supplementation in the diets of weaned piglets appears to increase the incidence of diarrhea and has adverse effects on intestinal morphology and barrier function.


Assuntos
Antioxidantes/metabolismo , Citocinas/análise , Suplementos Nutricionais , Mucosa Intestinal/fisiologia , Desmame , Leveduras , Animais , Diarreia/epidemiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Estresse Oxidativo , Suínos
9.
Nutr Res ; 34(9): 780-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25236424

RESUMO

The improvement of gut health and function with prebiotic supplements after weaning is an active area of research in pig nutrition. The present study was conducted to test the working hypothesis that medium-term dietary supplementation with soybean oligosaccharides (SBOS) can affect the gut ecosystem in terms of microbiota composition, luminal bacterial short-chain fatty acid and ammonia concentrations, and intestinal expression of genes related to intestinal immunity and barrier function. Ten Huanjiang mini-piglets, weaned at 21 days of age, were randomly assigned to 2 groups. Each group received a standard diet containing either dietary supplementation with 0.5% corn starch (control group) or 0.5% SBOS (experimental group). The results showed that dietary supplementation with SBOS increased the diversity of intestinal microflora and elevated (P < .05) the numbers of some presumably beneficial intestinal bacteria (e.g., Bifidobacterium sp, Faecalibacterium prausnitzii, Fusobacterium prausnitzii, and Roseburia). Soybean oligosaccharide supplementation also increased the concentration of short-chain fatty acid in the intestinal lumen, and it reduced (P < .05) the numbers of bacteria with pathogenic potential (e.g., Escherichia coli, Clostridium, and Streptococcus) and the concentration of several protein-derived catabolites (e.g., isobutyrate, isovalerate, and ammonia). In addition, SBOS supplementation increased (P < .05) expression of zonula occludens 1 messenger RNA, and it decreased (P < .05) expression of tumor necrosis factor α, interleukin 1ß, and interleukin 8 messenger RNA in the ileum and colon. These findings suggest that SBOS supplementation modifies the intestinal ecosystem in weaned Huanjiang mini-piglets and has potentially beneficial effects on the gut.


Assuntos
Proteínas Alimentares/metabolismo , Ácidos Graxos Voláteis/metabolismo , Glycine max/química , Mucosa Intestinal , Intestinos , Oligossacarídeos/farmacologia , Prebióticos , Compostos de Amônio/metabolismo , Animais , Bactérias/crescimento & desenvolvimento , Suplementos Nutricionais , Feminino , Hemiterpenos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Isobutiratos/metabolismo , Masculino , Microbiota/efeitos dos fármacos , Ácidos Pentanoicos/metabolismo , RNA Mensageiro/metabolismo , Suínos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Desmame , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
10.
Appl Biochem Biotechnol ; 168(4): 887-98, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22923175

RESUMO

This work is aimed at investigating the effects of recombinant bovine lactoferrampin-lactoferricin (LFA-LFC) instead of chlortetracycline on intestinal microflora in weaned piglets. The high cost of peptide production from either native digestion or chemical synthesis limits the clinical application of antimicrobial peptides. The expression of recombinant peptides in yeast may be an effective alternative. In the current study, recombinant LFA-LFC was produced via fed-batch fermentation in recombinant strain Pichia pastoris (KM71) XS10. Uniform design U6(6(4)) was used to optimize the fermentation conditions. The target peptide purified via cation-exchange and size-exclusion chromatography was added into the dietary of weaned piglets. After 21 days, the Lactobacilli, Bifidobacteria, and Enterobacteria in the chyme of the gut were quantified using real-time polymerase chain reaction. The results showed that approximately 82 mg of LFA-LFC was secreted into 1 L of medium under optimized conditions. Moreover, purified peptide showed strong antimicrobial activities against all the tested microorganisms. Compared with the control group, the LFA-LFC group increased the amount of Lactobacilli and Bifidobacteria (P<0.05) in the chyme of the stomach, duodenum, jejunum, ileum, colon, and caecum. These results show that dietary supplementation with LFA-LFC can affect intestinal microflora in weaned piglets.


Assuntos
Suplementos Nutricionais , Fermentação , Intestinos/microbiologia , Lactoferrina/biossíntese , Lactoferrina/farmacologia , Pichia/metabolismo , Desmame , Animais , Bovinos , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/fisiologia , Lactoferrina/genética , Lactoferrina/isolamento & purificação , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/farmacologia , Pichia/efeitos dos fármacos , Pichia/genética , Suínos
11.
J Sci Food Agric ; 91(13): 2371-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21769873

RESUMO

BACKGROUND: The present research was conducted to investigate the influences of supplementation with different levels of folic acids in diet on the performance of lactating sows. Twenty Landrace × Yorkshire sows received the same basal corn-soybean diets (folic acid, 1.3 mg kg(-1)) from gestation to parturition (day 107). After parturition, sows were allotted to four treatments: control group (folic acid supplementation level, 0 mg kg(-1)), group 1 (12.5 mg kg(-1)), group 2 (50 mg kg(-1)) and group 3 (100 mg kg(-1)), with five replicates of one sow. The experiment lasted for 21 days. RESULTS: (1) Folic acid increased milk production (P > 0.05). (2) Compared with the control, supplementation with folic acid (100 mg kg(-1)) increased the concentration of butter fat, total substance and non-lipoid substance significantly (P < 0.01), the concentration of milk protein was also significantly increased in group 2 and group 3 (P < 0.01) in milk. (3) Folic acid supplementation could increase litter weaning weight, average piglet weaning weight and average piglet daily gain (P > 0.05). CONCLUSION: These results suggested that supplementation with folic acid in the diets of lactating sows increases milk production, improved milk quality and the performance of piglets.


Assuntos
Suplementos Nutricionais , Ácido Fólico/administração & dosagem , Lactação/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Sus scrofa/crescimento & desenvolvimento , Amônia/sangue , Animais , Animais Lactentes , Peso ao Nascer , Nitrogênio da Ureia Sanguínea , Cruzamentos Genéticos , Feminino , Ácido Fólico/efeitos adversos , Ácido Fólico/metabolismo , Lactação/sangue , Metabolismo dos Lipídeos , Tamanho da Ninhada de Vivíparos , Masculino , Leite/metabolismo , Proteínas do Leite/metabolismo , Gravidez , Sus scrofa/fisiologia , Desmame , Aumento de Peso
12.
J Nutr ; 138(5): 867-72, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18424593

RESUMO

Dietary arginine supplementation increases growth of neonatal pigs, but the underlying mechanisms are unknown. This study was conducted to test the hypothesis that the arginine treatment activates translation initiation factors and protein synthesis in skeletal muscle. Piglets were fed milk-based diets supplemented with 0 or 0.6% L-arginine between 7 and 14 d of age. Following a 7-d period of arginine supplementation, at 1 h after the last meal, jugular venous blood samples were obtained for metabolite analysis, whereas longissimus muscle and liver were collected to determine the abundance and phosphorylation state of the mammalian target of the rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1), eIF4E, and eIF4G. Fractional rates of protein synthesis were measured in muscle and liver using the [(3)H]phenylalanine flooding-dose technique. Arginine supplementation increased (P < 0.05) daily gain, the plasma insulin concentration, and protein synthesis in skeletal muscle but not in liver. The arginine treatment enhanced the formation of the active eIF4E x eIF4G complex but reduced the amount of the inactive 4E-BP1 x eIF4E complex in muscle. These changes were associated with elevated levels of phosphorylated mTOR and 4E-BP1 in muscle of arginine-supplemented piglets (P < 0.05). Neither the total amounts nor phosphorylation levels of the translation initiation factors in the liver differed between control and arginine-supplemented piglets. Collectively, these results suggest that dietary arginine supplementation increases mTOR signaling activity in skeletal muscle, but not in liver, of milk-fed neonatal pigs. The findings provide a molecular mechanism for explaining the previous observation that increased circulating arginine stimulated muscle protein synthesis and promoted weight gain in neonatal pigs.


Assuntos
Animais Recém-Nascidos/metabolismo , Arginina/administração & dosagem , Músculo Esquelético/enzimologia , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos/metabolismo , Animais , Dieta , Suplementos Nutricionais , Fator de Iniciação 4E em Eucariotos/análise , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/análise , Fator de Iniciação Eucariótico 4G/metabolismo , Insulina/sangue , Fígado/química , Fígado/metabolismo , Leite , Proteínas Musculares/biossíntese , Músculo Esquelético/química , Fosforilação , Suínos/crescimento & desenvolvimento , Serina-Treonina Quinases TOR , Aumento de Peso/efeitos dos fármacos
13.
Br J Nutr ; 98(2): 237-52, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17403271

RESUMO

A deficiency of dietary protein or amino acids has long been known to impair immune function and increase the susceptibility of animals and humans to infectious disease. However, only in the past 15 years have the underlying cellular and molecular mechanisms begun to unfold. Protein malnutrition reduces concentrations of most amino acids in plasma. Findings from recent studies indicate an important role for amino acids in immune responses by regulating: (1) the activation of T lymphocytes, B lymphocytes, natural killer cells and macrophages; (2) cellular redox state, gene expression and lymphocyte proliferation; and (3) the production of antibodies, cytokines and other cytotoxic substances. Increasing evidence shows that dietary supplementation of specific amino acids to animals and humans with malnutrition and infectious disease enhances the immune status, thereby reducing morbidity and mortality. Arginine, glutamine and cysteine precursors are the best prototypes. Because of a negative impact of imbalance and antagonism among amino acids on nutrient intake and utilisation, care should be exercised in developing effective strategies of enteral or parenteral provision for maximum health benefits. Such measures should be based on knowledge about the biochemistry and physiology of amino acids, their roles in immune responses, nutritional and pathological states of individuals and expected treatment outcomes. New knowledge about the metabolism of amino acids in leucocytes is critical for the development of effective means to prevent and treat immunodeficient diseases. These nutrients hold great promise in improving health and preventing infectious diseases in animals and humans.


Assuntos
Aminoácidos/imunologia , Sistema Imunitário/imunologia , Aminoácidos/deficiência , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/imunologia , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos Sulfúricos/imunologia , Aminoácidos Sulfúricos/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Doenças Transmissíveis/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/imunologia , Humanos , Sistema Imunitário/metabolismo , Imunidade/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Distúrbios Nutricionais/imunologia
14.
Domest Anim Endocrinol ; 28(4): 430-41, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15826777

RESUMO

The study was to determine effects of dietary supplementation of chitosan (COS) and galacto-mannan-oligosaccharides (GMOS) on some serum biochemical indices, serum growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels, and hepatic and long gissimus muscle IGF-I mRNA expression in early-weaned piglets. Twenty six Duroc x Landrace x Yorkshire piglets at the age of 15 days were used. The piglets had access to creep feed during the suckling. Six piglets were sacrificed for sampling at the beginning of the study. The other 20 piglets were individually housed in metabolic cages and randomly allotted to four corn and soybean meal-based diets including the control group, the antibiotic group with 110 mg lincomycin/kg diet, the COS group containing 0.025% COS, and the GMOS group with 0.20% GMOS, respectively, in a 2-week feeding experiment. Blood urea nitrogen (BUN) level was reduced whereas serum total protein concentration was increased (P<0.05) in responses to the COS and GMOS supplementation. Dietary supplementation of COS and GMOS also increased (P<0.05) the serum GH and IGF-I levels along with enhanced hepatic and the muscle IGF-I mRNA abundance. Dietary supplementation of oligosaccharides such as COS and GMOS may improve growth and feed conversion efficiency by increasing plasma GH and IGF-I levels, in the early-weaned piglets.


Assuntos
Quitosana/administração & dosagem , Fator de Crescimento Insulin-Like I/biossíntese , Mananas/administração & dosagem , Oligossacarídeos/administração & dosagem , Suínos/metabolismo , Animais , Animais Lactentes , Antibacterianos/administração & dosagem , Proteínas Sanguíneas/metabolismo , Nitrogênio da Ureia Sanguínea , Colesterol/sangue , Suplementos Nutricionais , Hormônio do Crescimento/sangue , Fator de Crescimento Insulin-Like I/genética , Lincomicina/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Suínos/sangue , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA