Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 14(7): 3051-3066, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916480

RESUMO

Ginkgo biloba extract (GBE) is a common dietary supplement used by people with dyslipidaemia worldwide to reduce the risk of cardiovascular disease. Many studies have found that GBE itself has a variety of pharmacological activities. However, the role of GBE as an adjunct to conventional therapy with chemical drugs remains controversial. Therefore, this study explored the additional benefits of GBE in the treatment of hyperlipidaemia with statins in terms of both pharmacodynamics and pharmacokinetics. A hyperlipidaemia model was established by feeding rats a high-fat diet for a long time. The animals were treated with atorvastatin only, GBE only, or a combination of atorvastatin and GBE. The results showed that statins combined with GBE could significantly improve the blood lipid parameters, reduce the liver fat content, and reduce the size of adipocytes in abdominal fat. The effect was superior to statin therapy alone. In addition, the combination has shown additional liver protection against possible pathological liver injury or statin-induced liver injury. A lipidomic study showed that GBE could regulate the abnormal lipid metabolism of the liver in hyperlipemia. When statins are combined with GBE, this callback effect introduced by GBE on endogenous metabolism has important implications for resistance to disease progression and statin resistance. Finally, in the presence of GBE, there was a significant increase in plasma statin exposure. These results all confirmed that GBE has incremental benefits as a dietary supplement of statin therapy for dyslipidaemia.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipidemias , Ratos , Animais , Atorvastatina/farmacologia , Hiperlipidemias/tratamento farmacológico , Extratos Vegetais/farmacologia , Ginkgo biloba/química
2.
Fitoterapia ; 167: 105473, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36931529

RESUMO

In this work we investigated the chemical constituents of water extract of the leaves of Cyclocarya paliurus. Two new megastigmane glycosides (3 and 8), three aliphatic alcohol glycosides (9-11), and two aromatic glycosides (12 and 13), along with fourteen known compounds were isolated, and their in vitro inhibitory activity against α-glucosidase was evaluated. Compounds 13 and 15-18 displayed inhibitory activity with IC50 values varying from 27.05 to 96.58 µM, and the structure-activity relationship among isolated compounds was discussed.


Assuntos
Glicosídeos , alfa-Glucosidases , Glicosídeos/química , alfa-Glucosidases/metabolismo , Extratos Vegetais/química , Água/análise , Estrutura Molecular , Folhas de Planta/química
3.
Phytomedicine ; 109: 154552, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610157

RESUMO

BACKGROUND: Mitochondrial dynamics plays a crucial role in tubular injury in diabetic kidney disease (DKD). Asiatic acid (AA) has demonstrated renal protective effects in DKD; however, its therapeutic effect on tubular injury in DKD remains unclear. PURPOSE: This study aimed to verify the effects of AA on tubular injury in DKD and underlying mechanisms. STUDY DESIGN: In the present study, the effects of AA on tubular injury were assessed in rats with streptozotocin-induced diabetes and advanced glycation end products (AGEs)-stimulated HK-2 cells models. METHODS: After oral administration with or without AA for ten weeks, body weight and levels of fast blood glucose, serum creatinine (sCr), blood urea nitrogen (BUN), urinary albumin, and kidney injury molecule-1 (KIM-1) were detected. Histological analysis was performed to evaluate the renal function of rats. Moreover, the expression of proteins associated with the Nrf-2 pathway and mitochondrial dynamics was analyzed. AGEs-stimulated HK-2 cells were examined to evaluate the tubular protection and the mechanism of AA in vitro. RESULTS: AA remarkably decreased albumin levels, KIM-1 levels in urine, and serum Cr, and BUN levels. In addition, AA prevented tubular injury and mitochondrial injury by regulating the Nrf-2 pathway and mitochondrial dynamics. Furthermore, the effects of AA on mitochondrial dynamics and tubular protection were eliminated after treatment with ML385 (Nrf2 inhibitor). CONCLUSION: These findings suggested that AA might be developed as a potential candidate for the treatment of tubular injury in DKD, and its effects are potentially mediated via the regulation of the Nrf-2 pathway and mitochondrial dynamics.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Túbulos Renais , Dinâmica Mitocondrial , Rim/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Albuminas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
4.
J Agric Food Chem ; 70(38): 11944-11957, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36120893

RESUMO

Dietary saponins have the potential to ameliorate atherosclerosis (AS). Gypenosides of Gynostemma pentaphyllum (GPs) have been used as functional foods to exhibit antiatherosclerotic activity. The present study aimed to explore the protective effect, underlying mechanism and active substances of GPs on AS in vivo and in vitro. Results demonstrated GPs administration reduced the serum concentrations of TC and LDL-C, upregulated the plasma HDL-C content, inhibited the secretion of ICAM-1, VCAM-1, and MCP-1, and alleviated vascular lesions in VitD3 plus high cholesterol diet-induced AS rats as well as reduced adhesion factors levels in ox-LDL-stimulated HUVECs, which was potentially associated with suppressing PCSK9/LOX-1 pathway. Further activity-guided phytochemical investigation of GPs led to the identification of five new dammarane-type glycosides (1-5) and ten known analogs (6-15). Bioassay evaluation showed compounds 1, 6, 7, 12, 13, and 14 observably reduced the expressions of PCSK9 and LOX-1, as well as the secretion of adhesion factors in injured HUVECs. Molecular docking experiments suggested that the active saponins of GPs might bind to the allosteric pocket of PCSK9 located at the catalytic and C-terminal domains, and 2α-OH-protopanaxadiol-type gypenosides might exert a higher affinity for an allosteric binding site on PCSK9 by hydrogen-bond interaction with ARG-458. These findings provide new insights into the potential nutraceutical application of GPs and their bioactive compounds in the prevention and discovery of novel therapeutic strategies for AS.


Assuntos
Aterosclerose , Saponinas , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , LDL-Colesterol , Gynostemma/química , Hidrogênio , Molécula 1 de Adesão Intercelular , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pró-Proteína Convertase 9 , Ratos , Saponinas/química , Receptores Depuradores Classe E , Molécula 1 de Adesão de Célula Vascular
5.
Phytochemistry ; 204: 113434, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36169036

RESUMO

Cyclocarya paliurus, a Chinese herbal medicine and new food resource, contains a triterpenic-acid-rich extract that demonstrated ameliorative effect on diabetic nephropathy (DN). A more in-depth discovery of functional components led to the isolation of seven new triterpenoids including two pentacyclic triterpenes, 1α,2α,3ß,23-tetrahydroxyolean-12-en-28-oic acid and 2α,3ß,22α-tirhydroxyurs-12-en-28-oic acid 28-O-ß-D-glucopyranoside, and five tetracyclic triterpenoid glycosides (cypaliurusides N-R), together with twelve known compounds from the leaves of C. paliurus. Their structures were determined using a comprehensive analysis of chemical and spectroscopic data. Partial compounds were assessed for anti-fibrotic activities in high-glucose and TGF-ß1 induced HK-2 cells. Compound 16 remarkably decreased the level of fibronectin with an inhibition rate of 37.1%. Furthermore, 16 effectively alleviated the epithelial-mesenchymal transformation (EMT) process by upregulating E-cadherin expression and downregulating α-SMA expression, and it significantly decreased the level of the transcriptional inhibitors (Snail and Twist) of E-cadherin. The discovery of anti-fibrotic compounds from C. paliurus provides the potential utilization and functional candidates for the DN prevention.

6.
Phytomedicine ; 106: 154403, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075180

RESUMO

BACKGROUND: Previous studies reported that Aloe vera ameliorated DSS-induced colitis and promoted mucus secretion. However, the effect of Aloin A (AA), a major compound of Aloe vera, on colitis and its exact mechanism remains uncovered. METHODS: C57BL/6 mice were successively subjected to 3% DSS solution for 5 days and distilled water for 2 days. Concurrently, AA (25, 50 mg/kg) and 5-aminosalicylic (500 mg/kg) were administrated intragastrically from day 1 to day 7. Colitis was evaluated by disease active index (DAI), colon length, inflammation response, and intestinal barrier function. In vitro LS174T cells challenged with 50 ng/ml of lipopolysaccharides (LPS) were used to validate the modulatory action of AA on the Notch signaling pathway. RESULTS: Our results showed that oral administration with AA prominently prevented DSS-induced colitis symptoms in terms of decreased DAI, prevention of colon shortening, and reduced pathological damage. AA mitigated the inflammatory response evidenced by the decreased proinflammatory cytokines (TNF-α, IL-1ß, IL-6) and increased anti-inflammatory cytokine (IL-10). Besides, AA inhibited apoptosis and facilitated proliferation in colons. Moreover, AA treatment up-regulated the expression of tight junction (TJ) proteins (ZO-1, Occludin) and promoted the secretion of MUC2 to decrease colon permeability. Mechanistically, AA inhibited the Notch pathway to promote the secretion of MUC2, which was consistent with LPS-challenged LS174 cells. CONCLUSION: These results suggested that AA could prevent colitis by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. Thus, AA might be a prospective remedy for ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Emodina/análogos & derivados , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , Estudos Prospectivos , Transdução de Sinais , Proteínas de Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Água
7.
Phytomedicine ; 102: 154175, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35609386

RESUMO

BACKGROUND: Abnormal enhancement of hepatic gluconeogenesis is a vital mechanism of the pathogenesis of Type 2 diabetes mellitus (T2DM); thus, its suppression may present an efficient therapeutic strategy for T2DM. Cyclocarya paliurus (CP), a plant species native to China, has been reported to have anti-hyperglycemia activity. Our previous studies have revealed that Cyclocarya paliurus triterpenic acids (CPT) exert the favorable glucose-lowering activity, but the regulatory effect of CPT on hepatic gluconeogenesis is still unclarified. PURPOSE: This study aimed to investigate the potential role and mechanism of CPT in gluconeogenesis. STUDY DESIGN: In this study, the ameliorative effect and underlying mechanism of CPT on gluconeogenesis were investigated: high-fat diet and streptozotocin-induced T2DM mice and glucagon-challenged mouse primary hepatocytes. METHODS: T2DM model mice with or without oral administration of CPT for 4 weeks were monitored for body weight, glucose and lipid metabolism. Hematoxylin and eosin staining was used to observe liver lipid deposition. Real-time PCR assays were performed to examine the mRNA expression of glucose-6-phosphate (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK), two key enzymes involved in liver gluconeogenesis. Western blotting was used to determine AMP-dependent protein kinase (AMPK) expression and induction of the glucagon signaling pathway. The possible mechanism of CPT on liver gluconeogenesis was further explored in glucagon-induced mouse primary hepatocytes. RESULTS: In vivo and in vitro experiments revealed that CPT treatment significantly reduced fasting blood glucose, total cholesterol and triglyceride levels, and improved insulin resistance. Furthermore, CPT could obviously decreased the mRNA and protein expression of G6Pase and PEPCK, the cyclic AMP content, the phosphorylation level of protein kinase A and cyclic AMP response element-binding protein. But CPT promoted the phosphorylation of AMP-dependent protein kinase (AMPK) and activation of phosphodiesterase 4B. Mechanistically, intervention with Compound C (an AMPK inhibitor) partially blocked the suppressive effect of CPT on hepatic gluconeogenesis. CONCLUSION: These findings suggested that CPT may inhibit hepatic gluconeogenesis against T2DM by activating AMPK.


Assuntos
Diabetes Mellitus Tipo 2 , Juglandaceae , Triterpenos , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucagon/metabolismo , Glucagon/farmacologia , Glucagon/uso terapêutico , Gluconeogênese , Glucose/metabolismo , Juglandaceae/química , Fígado , Camundongos , RNA Mensageiro/metabolismo , Triterpenos/metabolismo
8.
J Ethnopharmacol ; 291: 115127, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35219820

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cyclocarya paliurus (Batal.) Iljinskaja. (C. paliurus) is a distinctive traditional Chinese herb, with remarkable hypoglycemic capacity. Emerging evidence suggested that glomerular endothelial injury is a crucial pathological process of diabetic kidney disease (DKD). Our previous research found that C. paliurus triterpenoids fraction (CPT) has ameliorative effects on DKD. However, whether C. paliurus could counteract the glomerular endothelial injury of DKD is still undefined. AIM OF THE STUDY: We aimed to investigate the effects of CPT on glomerular endothelial function and explore its underlying mechanisms with in vivo and in vitro experiments. MATERIALS AND METHODS: The effects and possible mechanisms of CPT on glomerular endothelial injury in streptozotocin (STZ)-induced diabetic rats and H2O2-challenged primary rat glomerular endothelial cells were successively investigated. RESULTS: In vivo, we found that CPT treatment obviously decreased the levels of blood glucose, microalbumin, BUN and mesangial expansion. Additionally, CPT could ameliorate renal endothelium function by reducing the content of VCAM-1 and ICAM-1, and blocking the loss of glycocalyx. In vitro, CPT could also alleviate H2O2-induced endothelial injury. Mechanistically, CPT remarkably increased the phosphorylation levels of Akt and eNOS, decreased the expression of ROCK and Arg2in vivo and in vitro. Noticeably, the favorable effects mediated by CPT were abolished following ROCK overexpression with plasmid transfection. CONCLUSION: These findings suggested that CPT could be sufficient to protect against glomerular endothelial injury in DKD through regulating ROCK pathway.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Juglandaceae , Triterpenos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Células Endoteliais , Peróxido de Hidrogênio , Ratos , Triterpenos/farmacologia , Triterpenos/uso terapêutico
9.
Artigo em Inglês | MEDLINE | ID: mdl-35047046

RESUMO

Gout is regarded as a painful inflammatory arthritis induced by the deposition of monosodium urate crystals in joints and soft tissues. Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated IL-1ß production plays a crucial role in the pathological process of gout. Cyclocarya paliurus (CP) tea was found to have an effect on reducing the blood uric acid level of people with hyperuricemia and gout. However, its medicinal ingredients and mechanism for the treatment of gout are still unclear. Thus, this study was designed to investigate the effects of the active triterpenoids isolated from C. paliurus on gout and explore the underlying mechanism. The results showed that compound 2 (3ß,23-dihydroxy-12-ene-28-ursolic acid) from C. paliurus significantly decreased the protein expression of IL-1ß, caspase-1, pro-IL-1ß, pro-caspase-1, and NLRP3. Furthermore, the production of ROS in the intracellular was reduced after compound 2 treatment. However, ROS agonist rotenone remarkably reversed the inhibitory effect of compound 2 on the protein expression of NLRP3 inflammasome. Additionally, the expression level of LC3 and the ratio of LC3II/LC3I were increased, but the expression level of p62 was suppressed by compound 2 whereas an autophagy inhibitor 3-methyladenine (3-MA) significantly abolished the inhibitory effects of compound 2 on the generation of ROS and the protein expression of NLRP3 inflammasome. Moreover, compound 2 could ameliorate the expression ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. Interestingly, mTOR activator MHY-1485 could block the promotion effect of compound 2 on autophagy regulation and inhibitory effect of compound 2 on induction of ROS and IL-1ß. In conclusion, these findings suggested that compound 2 may effectively improve NLRP3 inflammasome-mediated gout via PI3K-AKT-mTOR-dependent autophagy and could be further investigated as a potential agent against gout.

10.
Phytomedicine ; 95: 153867, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923234

RESUMO

BACKGROUNDS: The aberrant PD-L1 expression on cancer cells was confirmed to participate in immune evasion of hepatocellular carcinoma (HCC). Previous studies had documented that there were anti-tumorigenic effects of chrysin on HCC. However, whether chrysin can act on the over-expressed PD-L1 on HCC cells to exert the therapeutic effectiveness and the involved mechanisms has not yet been deciphered. PURPOSE: Herein, we aimed to explore the regulatory effects of chrysin on the PD-1/PD-L1 immune checkpoint and investigate its possible mechanisms in vivo and in vitro. METHODS: H22 xenograft mouse model was used to investigate the effects of chrysin on tumor growth and PD-L1 expression in tumors. In interferon-gamma (IFN-γ)-induced HepG2 cells, the cytotoxicity of chrysin was detected by MTT assay. Flow cytometry, ELISA and RT-PCR were carried out to evaluate the expression of PD-L1, and the expression of proteins in STAT3 and NF-κB pathways was also determined by Western blot. In HepG2 cells and Jurkat T cell co-culture system, ELISA kit was used to detect the level of IL-2, and T cell proliferation was further evaluated by CCK-8 method. RESULTS: Our data suggested that chrysin could effectively inhibit the progression of tumor, and promote the anti-tumor immunity of mice concomitant with enhanced CD4/CD8-positive T cell proportion in tumor tissues of H22 xenograft mouse model. Additionally, chrysin significantly down-regulated the expression of PD-L1 in vivo and in vitro, which was closely associated with the blockage of STAT3 and NF-κB pathways. Moreover, in the co-culture system, chrysin could increase the proliferation of T cells and the concentration of IL-2. CONCLUSION: These results indicate that chrysin may have the potential to be an immune checkpoint inhibitor for preventive or as an adjunctive curative agent for HCC.


Assuntos
Carcinoma Hepatocelular , Flavonoides , Neoplasias Hepáticas , Animais , Antígeno B7-H1 , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Flavonoides/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos
11.
J Ethnopharmacol ; 284: 114772, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34688801

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cyclocarya paliurus (CP) is a traditional Chinese herb and possesses a variety of biological activities including anti-hyperglycemia, anti-hyperlipidemia, antioxidant and anti-inflammation. Arjunolic acid (AA) is an abundant and bioactive ingredient in CP that shows significant protection against many metabolic diseases such as diabetic complication. Diabetic retinopathy (DR) is a serious complication of diabetes and may lead to vision loss. However, the protective effects and underlying mechanisms of AA against DR is not still understood. AIM OF THE STUDY: We aimed to investigate whether AA activates AMPK/mTOR/HO-1 regulated autophagy pathway to alleviate DR. MATERIALS AND METHODS: In the study, the STZ-induced diabetic model of rats was established, and AA with 10 and 30 mg/kg dosages was given orally for ten weeks to investigate their effect on retinal injury of DR. H2O2-induced ARPE-19 cells were applied to evaluate anti-apoptosis and anti-oxidant effect of AA. RESULTS: The results revealed that AA could prevent STZ-induced weight loss and increase the retinal thickness and nuclei counts. The level of HO-1 protein was upregulated both in vivo and in vitro. In addition, AA prevented retinal damage and cell apoptosis through the AMPK-mTOR-regulated autophagy pathway. Furthermore, anti-apoptosis capacity, as well as the expression of HO-1 and LC3 protein, were effectively locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C). CONCLUSIONS: This finding implies that AA may be a promising candidate drug by protecting retinal cells from STZ-induced oxidative stress and inflammation through the AMPK/mTOR/HO-1 regulated autophagy pathway.


Assuntos
Adenilato Quinase/metabolismo , Retinopatia Diabética/tratamento farmacológico , Heme Oxigenase (Desciclizante)/metabolismo , Juglandaceae/química , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/uso terapêutico , Adenilato Quinase/genética , Animais , Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental , Retinopatia Diabética/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Masculino , Estrutura Molecular , Fitoterapia , Extratos Vegetais , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Triterpenos/química
12.
Nat Prod Res ; 36(15): 3938-3944, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33719794

RESUMO

Two previously undescribed triterpenoids (1-2), along with thirteen known compounds (3-15) were isolated from a CHCl3-soluble extract of the leaves of Cyclocarya paliurus. Their structures were established on the basis of chemical and spectroscopic approaches. These compounds were assessed for their therapeutic effects on diabetic nephropathy (DN)-evoked fibrosis through High-Glucose and transforming growth factor-ß1 (TGF-ß1) challenged HK-2 cells. Among them, compounds 3, 5 and 8 could remarkedly decrease the level of fibronectin to relieve DN with 27.66 ± 2.77%, 6.09 ± 0.57% and 17.74 ± 5.83% inhibition rate at 10 µM, 10 µM and 1 µM, respectively.


Assuntos
Juglandaceae , Triterpenos , Juglandaceae/química , Extratos Vegetais/química , Folhas de Planta/química , Triterpenos/química
13.
Phytomedicine ; 91: 153688, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34380071

RESUMO

BACKGROUNDS: Atherosclerotic Cardiovascular Disease (ASCVD) is defined as ischemic or endothelial dysfunction-various inflammatory diseases, which is mainly caused by excessive low-density lipoprotein cholesterol (LDL-C) in circulating blood. Gynostemma pentaphyllum is a traditional Chinese medicine, and total Gypenosides are used for the treatment of hyperlipidemia and to reduce circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) level. However, which gypenoside involved in the modulation of PCSK9 expression is still unknown. PURPOSE: This study aimed to discover effective PCSK9 inhibitors from Gypenosides in accordance with the 2019 ESC/EAS guidelines. METHODS: HPLC was employed to determine major six components of Gypenosides. The inhibitory activity on secreted PCSK9 in HepG2 of six major compounds from Gypenosides were screened by ELISA. The level of low-density lipoprotein (LDL) receptor (LDLR) was determined by Flow cytometry and Immunofluorescence. The expression levels of PCSK9, LDLR and Sterol-regulatory element binding proteins-2 (SREBP-2) were analyzed by qPCR and Western blot. DiI-LDL was added to evaluated LDL uptake into HepG2. RESULTS: The results suggested that the mRNA and protein levels of PCSK9 were down-regulated by Gypenoside LVI and the LDLR degradation in lysosomes system was inhibited, thereby leading to an increasing in LDL uptake into HepG2 cells. Furthermore, Gypenoside LVI decreased PCSK9 expression induced by stains. Altogether, Gypenoside LVI enhances LDL uptake into HepG2 cells by increased LDLR level on cell-surface and suppressed PCSK9 expression. CONCLUSION: This indicates that Gypenoside LVI can be used as a useful supplement for statins in the treatment of hypercholesterolemia. This is firstly reported that monomeric compound of G. pentaphyllum planted in Hunan province has the effect of increasing LDL-C uptake in hepatocytes via inhibiting PCSK9 expression.


Assuntos
Gynostemma , Pró-Proteína Convertase 9 , Receptores de LDL/metabolismo , LDL-Colesterol , Gynostemma/química , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia , Pró-Proteína Convertase 9/metabolismo
14.
Fitoterapia ; 154: 105003, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333032

RESUMO

Four new C-11 monosaccharide attached dammarane triterpenoid glycosides cypaliurusides SV (1-4), along with nine known dammarane triterpenoid glycosides (5-13) were isolated from a CHCl3-soluble extract of the leaves of Cyclocarya paliurus. All characterized compounds were assayed for their cytotoxicities against HepG2 cells and 10 compounds were evaluated for the agonistic effects on sirtuin1 (SIRT1). The results showed that compounds 1, 5 and 6 were strongly cytotoxic in HepG2 cell line. Two dammarane triterpenoid glycosides 3 and 10 exhibited agonistic activities on SIRT1 with IC50 of 10 µM and 20 µM, respectively.


Assuntos
Glicosídeos/farmacologia , Juglandaceae/química , Sirtuína 1/efeitos dos fármacos , Triterpenos/farmacologia , China , Glicosídeos/isolamento & purificação , Células Hep G2 , Humanos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Triterpenos/isolamento & purificação , Damaranos
15.
Food Funct ; 12(17): 7709-7717, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34286775

RESUMO

Dietary fiber is the basic therapeutic method to relieve the symptoms of chronic constipation. The aim of this study was to compare the laxative effect of konjac glucomannan (KGM) and konjac oligosaccharides (KOS) on constipated rats. KGM and KOS were administered to loperamide-induced constipated rats at dosages of 100 mg per kg bw and 400 mg per kg bw for 15 days. Feces were collected to evaluate the defecation function. X-ray imaging and an electrophysiological system were used to determine gastrointestinal (GI) motility. Immunohistochemistry and western blotting were used to measure the protein levels. Magnetic resonance imaging (MRI) was performed to assess flatulence. Our results demonstrated that low-dose KOS (L-KOS) exerted the best laxative effect. Compared to the normal control (NC) group, the fecal number in the L-KOS group increased by 39.4%, and the fecal weight significantly increased by 31.9% which was higher than those in the low-dose KGM (L-KGM) and high-dose KGM (H-KGM) groups. The fecal moisture content and transit scores were significantly increased only in the L-KOS group. Meanwhile, less GI gas was produced by KOS. Additionally, further investigations suggested that KOS could upregulate the protein expression of stem cell factors (SCF)/c-kit, and significantly promoted the secretion of mucus. In conclusion, compared to KGM, KOS had a conspicuous laxative effect especially at a low dosage. The potential laxative mechanisms of KOS probably are regulating the SCF/c-kit signalling pathway and increasing mucus secretion. These findings indicated that as a kind of functional oligosaccharide, KOS is more conducive to alleviating constipation compared to polysaccharides.


Assuntos
Amorphophallus/química , Constipação Intestinal/tratamento farmacológico , Laxantes/administração & dosagem , Mananas/administração & dosagem , Oligossacarídeos/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/metabolismo , Constipação Intestinal/fisiopatologia , Defecação , Fezes/química , Humanos , Loperamida/efeitos adversos , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo
16.
Life (Basel) ; 11(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069176

RESUMO

NAFLD (non-alcoholic fatty liver disease) is one of the most prominent liver diseases in the world. As a metabolic-related disease, the development of NAFLD is closely associated with various degrees of lipid accumulation, oxidation, inflammation, and fibrosis. Ilex chinensis Sims is a form of traditional Chinese medicine which is used to treat bronchitis, burns, pneumonia, ulceration, and chilblains. Kaempferol-3-O-glucuronide (K3O) is a natural chemical present in Ilex chinensis Sims. This study was designed to investigate the antioxidative, fat metabolism-regulating, and anti-inflammatory potential of K3O. A high-cholesterol diet (HCD) was used to establish steatosis in larval zebrafish, whereby 1mM free fatty acid (FFA) was used to induce lipid accumulation in HepG2 cells, while H2O2 was used to induce oxidative stress in HepG2. The results of this experiment showed that K3O reduced lipid accumulation and the level of reactive oxygen species (ROS) both in vivo (K3O, 40 µM) and in vitro (K3O, 20 µM). Additionally, K3O (40 µM) reduced neutrophil aggregation in vivo. K3O (20 µM) also decreased the level of malondialdehyde (MDA) and significantly increased the level of glutathione peroxidase (GSH-px) in both the HCD-induced larval zebrafish model and H2O2-exposed HepG2 cells. In the mechanism study, keap1, nrf2, tnf-α, and il-6 mRNA were all significantly reversed by K3O (20 µM) in zebrafish. Changes in Keap1 and Nrf2 mRNA expression were also detected in H2O2-exposed HepG2 cells after they were treated with K3O (20 µM). In conclusion, K3O exhibited a reduction in oxidative stress and lipid peroxidation, and this may be related to the Nrf2/Keap1 pathway in the NAFLD larval zebrafish model.

17.
J Ethnopharmacol ; 266: 113411, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32980482

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tiantian capsule (TTC), as a functional food, which consists of four herb medicines, including Aloe vera Burm.f. (25%), leaf juices, dried; Cucurbita moschata Duch. (25%), fructus, dried; Poria cocos (Schw.) Wolf. (12.5%), sclerotium, dried; Tremella fuciformis Berk. (12.5%), fruiting bodies, dried, and one extract xylooligosaccharides (25%) from Maize Cob by enzymolysis, has been commonly used in China to ameliorate constipation. AIM OF THE STUDY: The aim of the work is to elucidate the potential laxative mechanisms of TTC in loperamide-induced constipated rats. MATERIALS AND METHODS: LC-MS/MS was employed for analyzing the TTC extract. The gastrointestinal transit was evaluated by X-ray. The H&E and Alcian-Blue stain were applied to determine the changes of goblet cells and mucus layer, respectively. Meanwhile, levels of neurotransmitters were evaluated by enzyme-linked immunosorbent assay. The protein expressions were also measured by immunohistochemistry and Western blot. RESULTS: Our results showed that TTC administration attenuated constipation responses in aspects of fecal pellets number, water content of feces, stomach emptying and gastrointestinal transit. Further investigations revealed that TTC treatment not only induced the recovery of neurotransmitters, such as motilin, substance P, somatostatin, endothelin and vasoactive intestinal peptide, but also up-regulated the expressions of c-kit and stem cell factor (SCF). Additionally, the number of goblet cells and thickness of the mucus layer were elevated, and the guanylate cyclase C-cGMP signal pathway was also up-regulated after TTC treatment. CONCLUSION: Our findings demonstrated that the laxative effect of TTC in constipation rats is probably due to the regulation of bowel movement and intestinal fluid secretion.


Assuntos
Constipação Intestinal/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Trânsito Gastrointestinal/efeitos dos fármacos , Laxantes/farmacologia , Animais , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Alimento Funcional , Laxantes/química , Loperamida/toxicidade , Masculino , Medicina Tradicional Chinesa , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
18.
Phytomedicine ; 66: 153130, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31790897

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver diseases. Cyclocarya paliurus (C. paliurus), an edible and medicinal plant in Chinese folk, has been demonstrated to ameliorate diabetes, obesity and lipid metabolism disorders. However, its effects on NAFLD and its potential molecular mechanism have not been clearly expounded. PURPOSE: The present study was designed to explore the therapeutic potential of triterpenic acids-enriched fraction from C. paliurus (CPT), as well as its underlying mechanism in vivo and in vitro models of NAFLD. METHODS: The metabolic effects and possible molecular mechanism of CPT were examined using HepG2 cells and primary hepatocytes (isolated from C57BL/6 J mice) models of fatty liver induced by palmitic acid (PA) and a high fat diet mouse model. RESULTS: In high fat diet-induced C57BL/6 J mice, CPT significantly reduced liver weight index, serum alanine transaminase (ALT), aspartate transaminase (AST), triacylglycerol (TG), total cholesterol (TC) and hepatic TG, TC levels. Moreover, CPT dramatically decreased the contents of blood glucose, insulin, and insulin resistance (HOMA-IR) index. Meanwhile, CPT significantly increased the tyrosine phosphorylation level of IRS and the uptake of 2-deoxyglucose (2DG) in PA-induced HepG2 cells and primary hepatocytes fatty liver models. Furthermore, in PA-induced HepG2 cells and primary hepatocytes, CPT significantly decreased the number of lipid droplets and intracellular TG content. In addition, mechanism investigation showed that CPT increased the phosphorylation of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt) and glycogen synthase-3ß (GSK3ß) in vivo and in vitro models, which were abrogated by PI3K inhibitor LY294002 in vitro models. CONCLUSION: These findings indicate that CPT may exert the therapeutic effects on NAFLD via regulating PI3K/Akt/GSK3ß pathway.


Assuntos
Juglandaceae/química , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Extratos Vegetais/química , Plantas Medicinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triglicerídeos/metabolismo , Triterpenos/química
19.
Phytomedicine ; 64: 153060, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31401495

RESUMO

BACKGROUD: Diabetic nephropathy is the most serious complication of diabetes. Cyclocarya paliurus (CP), an herbal plant in China, has been reported the biological activity of anti-hyperglycemia. However, its effects on the diabetic nephropathy (DN) remain unclear. PURPOSE: We aimed to investigate the potential role of CP and its underlying mechanisms on DN. STUDY DESIGN: In this study, the effects of triterpenic acids-enriched fraction from CP (CPT) on DN was evaluated in streptozotocin (STZ)-induced rats and high glucose (HG)-induced HK-2 cells models. METHODS: After oral administration with or without CPT for 10 weeks, body weight, glucose, microalbumin, serum creatinine and blood urea in STZ-induced rats were detected. Histological analysis was performed to evaluate renal function of mice. Moreover, the level of autophagy was detected by western blot or immunostaining. In vitro, HG-induced HK-2 cell was conducted to evaluate the renal protection and mechanism of CPT. RESULTS: CPT dramatically decreased the levels of microalbumin, serum creatinine and blood urea nitrogen and ameliorated increased mesangial matrix and glomerular fibrosis. In addition, we found the CPT prevented renal damage and cell apoptosis through the autophagy. Furthermore, CPT could increase the phosphorylation of AMPK and decrease its downstream effector phosphorylation of mTOR. Besides, the expression of LC3-II were locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C), implying that the autophagy may be regulated with AMPK activation. CONCLUSION: These findings suggested that CPT might be a desired candidate against diabetes, potentially through AMPK-mTOR-regulated autophagy pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Juglandaceae/química , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Glicemia/análise , Creatinina/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/fisiopatologia , Medicamentos de Ervas Chinesas , Rim/efeitos dos fármacos , Rim/fisiopatologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/fisiopatologia , Masculino , Camundongos , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/farmacologia
20.
Magn Reson Med ; 82(6): 2212-2224, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418484

RESUMO

PURPOSE: Early evaluation of tumor response to thermal ablation therapy can help identify untreated tumor cells and then perform repeated treatment as soon as possible. The purpose of this work was to explore the potential of rhein-based necrosis-avid contrast agents (NACAs) for early evaluation of tumor response to microwave ablation (MWA). METHODS: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to test the cytotoxicity of rhein-based NACAs against HepG2 cells. Rat models of liver MWA were used for investigating the effectiveness of rhein-based NACAs in imaging the MWA lesion, the optimal time period for post-MWA MRI examination, and the metabolic behaviors of 68 Ga-labeled rhein-based NACAs. Rat models of orthotopic liver W256 tumor MWA were used for investigating the time window of rhein-based NACAs for imaging the MWA lesion, the effectiveness of these NACAs in distinguishing the residual tumor and the MWA lesion, and their feasibility in early evaluating the tumor response to MWA. RESULTS: Gadolinium 2,2',2''-(10-(2-((4-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)butyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (GdL2 ) showed low cytotoxicity and high quality in imaging the MWA region. The optimal time period for post-MWA MRI examination using GdL2 was 2 to 24 h after the treatment. During 2.5 to 3.5 h postinjection, GdL2 can better visualize the MWA lesion in comparison with gadolinium 2-[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl]acetic acid (Gd-DOTA), and the residual tumor would not be enhanced. The tumor response to MWA as evaluated by using GdL2 -enhanced MRI was consistent with histological examination. CONCLUSION: GdL2 appears to be a promising NACA for the tumor response assessment after thermal ablation therapies.


Assuntos
Antraquinonas/química , Meios de Contraste/química , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Micro-Ondas , Necrose , Animais , Ablação por Cateter , Gadolínio/química , Células Hep G2 , Compostos Heterocíclicos , Humanos , Hipertermia Induzida , Fígado/cirurgia , Neoplasias Hepáticas/terapia , Compostos Organometálicos , Ratos , Ratos Sprague-Dawley , Solventes , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA