Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Biotechnol ; 15(7): 2097-2111, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35298867

RESUMO

Phosphate-mobilizing bacteria (PMB) play a critical role in the regulation of phosphorus availability in the soil. The microbial genes pqqC and phoD encode pyrroloquinoline quinone synthase and bacterial alkaline phosphatase, respectively, which regulate inorganic and organic phosphorus mobilization, and are therefore used as PMB markers. We examined the effects of soil properties in three Moso bamboo forest sites on the PMB communities that were profiled using high-throughput sequencing. We observed differentiated responses of pqqC- and phoD-harbouring PMB communities to various soil conditions. There was significant variation among the sites in the diversity and structure of the phoD-harbouring community, which correlated with variation in phosphorus levels and non-capillary porosity; soil organic carbon and soil water content also affected the structure of the phoD-harbouring community. However, no significant difference in the diversity of pqqC-harbouring community was observed among different sites, while the structure of the pqqC-harbouring bacteria community was affected by soil organic carbon and soil total nitrogen, but not soil phosphorus levels. Overall, changes in soil conditions affected the phoD-harbouring community more than the pqqC-harbouring community. These findings provide a new insight to explore the effects of soil conditions on microbial communities that solubilize inorganic phosphate and mineralize organic phosphate.


Assuntos
Microbiologia do Solo , Solo , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Florestas , Fósforo/metabolismo , Poaceae/metabolismo , Solo/química
2.
Environ Microbiol ; 23(10): 6074-6088, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110697

RESUMO

Phosphorus-solubilizing microorganisms (PSMicros) play vital roles in helping plants to resist phosphorus (P) deficiency in soils, while their activities may vary with site conditions. The present study investigated the microbial diversity and subsequently screened PSMicro strains from rhizosphere soils at five bamboo forests in subtropical China, among which four were developed in a same stand. The activities of the screened PSMicros were also assessed. The results showed great variation in microbial diversity among different forests. Concomitantly, a total of 52 PSMicro strains were isolated and identified to 10 bacterial genera and 4 fungal genera, with different forest rhizosphere soils containing different PSMicros and/or showing different abundances for a certain PSMicro genus, despite some PSMicros would not grow readily on plates. Different, and even the same microbial genera isolated across the five forests, varied significantly in the amount of P that they solubilized from the medium, which ranged from 18.5 to 581.33 mg L-1 . Among the isolated PSMicros, species of Bacillus, Kluyvera, Buttiauxella, Meyerozyma and Penicillium were preponderant to liberate P from organic and inorganic P pools. This will have implications for biotechnological exploitation of microbes to alleviate P limitation in agricultural and natural systems with a sustainable green ecological approach.


Assuntos
Fósforo , Rizosfera , China , Florestas , Solo , Microbiologia do Solo
3.
Environ Sci Pollut Res Int ; 20(12): 8579-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23686790

RESUMO

Chronic exposure to arsenic (As) in rice has raised many health and environmental problems. As reported, great variation exists among different rice genotypes in As uptake, translocation, and accumulation. Under hydroponic culture, we find that the Chinese wild rice (Oryza rufipogon; acc. 104624) takes up the most arsenic among tested genotypes. Of the cultivated rice, the indica cv. 93-11 has the lowest arsenic translocation factor value but accumulates the maximum concentration of arsenic followed by Nipponbare, Minghui 86, and Zhonghua 11. Higher level of arsenite concentration (50 µM) can induce extensive photosynthesis and root growth inhibition, and cause severe oxidative stress. Interestingly, external silicate (Si) supplementation has significantly increased the net photosynthetic rate, and promoted root elongation, as well as strongly ameliorated the oxidative stress by increasing the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and peroxidase in roots and/or leaves of 93-11 seedlings. Notably, 1.873 mM concentration of Si considerably decreases the total As uptake and As content in roots, but significantly increases the As translocation from roots to shoots. In contrast, Si supplementation with 1.0 mM concentration significantly increases the total As uptake and As concentrations in roots and shoots of 93-11 seedlings after 50 µM arsenite treatment for 6 days.


Assuntos
Antioxidantes/metabolismo , Arsenitos/toxicidade , Oryza/efeitos dos fármacos , Silicatos/metabolismo , Poluentes do Solo/toxicidade , Adaptação Fisiológica , Antioxidantes/farmacologia , Arsênio/toxicidade , Arsenitos/metabolismo , Ascorbato Peroxidases/metabolismo , Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Hidroponia , Oryza/classificação , Oryza/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Silicatos/farmacologia , Poluentes do Solo/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA