Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 334, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370799

RESUMO

BACKGROUND: Parasitic plants engage in a complex molecular dialog with potential host plants to identify a host and overcome host defenses to initiate development of the parasitic feeding organ, the haustorium, invade host tissues, and withdraw water and nutrients. While one of two critical signaling events in the parasitic plant life cycle (germination via stimulant chemicals) has been relatively well-studied, the signaling event that triggers haustorium formation remains elusive. Elucidation of this poorly understood molecular dialogue will shed light on plant-plant communication, parasitic plant physiology, and the evolution of parasitism in plants. RESULTS: Here we present an experimental framework that develops easily quantifiable contrasts for the facultative generalist parasitic plant, Triphysaria, as it feeds across a broad range of diverse flowering plants. The contrasts, including variable parasite growth form and mortality when grown with different hosts, suggest a dynamic and host-dependent molecular dialogue between the parasite and host. Finally, by comparing transcriptome datasets from attached versus unattached parasites we gain insight into some of the physiological processes that are altered during parasitic behavior including shifts in photosynthesis-related and stress response genes. CONCLUSIONS: This work sheds light on Triphysaria's parasitic life habit and is an important step towards understanding the mechanisms of haustorium initiation factor perception, a unique form of plant-plant communication.


Assuntos
Interações Hospedeiro-Parasita , Magnoliopsida/parasitologia , Orobanchaceae/fisiologia , Arabidopsis/parasitologia , Magnoliopsida/fisiologia , Medicago/parasitologia , Oryza/parasitologia , Solanum/parasitologia , Zea mays/parasitologia
2.
Plant Cell ; 22(4): 1404-19, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20424175

RESUMO

Parasitic plants in the Orobanchaceae develop haustoria in response to contact with host roots or chemical haustoria-inducing factors. Experiments in this manuscript test the hypothesis that quinolic-inducing factors activate haustorium development via a signal mechanism initiated by redox cycling between quinone and hydroquinone states. Two cDNAs were previously isolated from roots of the parasitic plant Triphysaria versicolor that encode distinct quinone oxidoreductases. QR1 encodes a single-electron reducing NADPH quinone oxidoreductase similar to zeta-crystallin. The QR2 enzyme catalyzes two electron reductions typical of xenobiotic detoxification. QR1 and QR2 transcripts are upregulated in a primary response to chemical-inducing factors, but only QR1 was upregulated in response to host roots. RNA interference technology was used to reduce QR1 and QR2 transcripts in Triphysaria roots that were evaluated for their ability to form haustoria. There was a significant decrease in haustorium development in roots silenced for QR1 but not in roots silenced for QR2. The infrequent QR1 transgenic roots that did develop haustoria had levels of QR1 similar to those of nontransgenic roots. These experiments implicate QR1 as one of the earliest genes on the haustorium signal transduction pathway, encoding a quinone oxidoreductase necessary for the redox bioactivation of haustorial inducing factors.


Assuntos
NAD(P)H Desidrogenase (Quinona)/metabolismo , Orobanchaceae/enzimologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/parasitologia , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , NAD(P)H Desidrogenase (Quinona)/genética , Orobanchaceae/genética , Orobanchaceae/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Interferência de RNA , RNA de Plantas/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA