Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plants (Basel) ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256842

RESUMO

Non-small-cell lung cancer (NSCLC) is renowned for its aggressive and highly metastatic nature. In recent years, there has been a surge in interest regarding the therapeutic potential of traditional medicinal plants. Dracaena loureirin (D. loureirin), Ficus racemosa Linn. (F. racemosa), and Harrisonia perforata (Blanco) Merr. (H. perforata) are prominent traditional medicinal herbs in Thailand, recognized for their diverse biological activities, including antipyretic and anti-inflammatory effects. However, their prospective anti-cancer properties against NSCLC remain largely unexplored. This study aimed to evaluate the anti-cancer attributes of ethanolic extracts obtained from D. loureiri (DLEE), F. racemosa (FREE), and H. perforata (HPEE) against the A549 lung adenocarcinoma cell lines. Sulforhodamine B (SRB) assay results revealed that only DLEE exhibited cytotoxic effects on A549 cells, whereas FREE and HPEE showed no such cytotoxicity. To elucidate the anti-cancer mechanisms of DLEE, cell cycle and apoptosis assays were performed. The findings demonstrated that DLEE inhibited cell proliferation and induced cell cycle arrest at the G0/G1 phase in A549 cells through the downregulation of key cell cycle regulator proteins, including cyclin D1, CDK-2, and CDK-4. Furthermore, DLEE treatment facilitated apoptosis in A549 cells by suppressing anti-apoptotic proteins (Bcl-2, Bcl-xl, and survivin) and enhancing apoptotic proteins (cleaved-caspase-3 and cleaved-PARP-1). In summary, our study provides novel insights into the significant anti-cancer properties of DLEE against A549 cells. This work represents the first report suggesting that DLEE has the capability to impede the growth of A549 lung adenocarcinoma cells through the induction of apoptosis.

2.
Nutrients ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686825

RESUMO

The activation of the NLRP3 inflammasome pathway during infectious pathogen-induced immunopathology can lead to chronic inflammation and various adverse health outcomes. Identification of functional foods with anti-inflammatory properties is crucial for preventing inflammation triggered by NLRP3 inflammasome activation. This study aimed to investigate the anti-inflammatory properties of a proanthocyanidin-rich fraction obtained from red rice germ and bran against lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced condition in A549 lung cells. The proanthocyanidin-rich fraction from Yamuechaebia 3 red rice extract (YM3-PRF) was obtained using column chromatography with Sephadex LH20, and its total proanthocyanidin content was determined to be 351.43 ± 1.18 mg/g extract using the vanillin assay. A549 lung cells were pretreated with YM3-PRF at concentrations of 5-20 µg/mL prior to exposure to LPS (1 µg/mL) and ATP (5 nM). The results showed that YM3-PRF significantly inhibited the expression of inflammatory mRNAs (NLRP3, IL-6, IL-1ß, and IL-18) and the secretion of cytokines (IL-6, IL-1ß, and IL-18) in a dose-dependent manner (p < 0.05). Mechanistically, YM3-PRF exerted its anti-inflammatory effects by inhibiting NF-κB translocation and downregulating proteins associated with the NLRP3 inflammasome pathway (NLRP3, ASC, pro-caspase-1, and cleaved-caspase-1). These findings suggest that the proanthocyanidin-rich fraction from red rice germ and bran has protective effects and may serve as a potential therapeutic option for chronic inflammatory diseases associated with NLRP3 inflammasome activation.


Assuntos
Oryza , Pneumonia , Proantocianidinas , NF-kappa B , Inflamassomos , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-6 , Lipopolissacarídeos , Proantocianidinas/farmacologia , Inflamação , Alimento Funcional , Trifosfato de Adenosina , Pulmão , Extratos Vegetais/farmacologia
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142258

RESUMO

Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1ß, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1ß, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.


Assuntos
Antipiréticos , Tratamento Farmacológico da COVID-19 , Clerodendrum , Hesperidina , Petasites , Células A549 , Anti-Inflamatórios/farmacologia , Caspase 1/metabolismo , Clerodendrum/metabolismo , Citocinas/metabolismo , Flavonoides/farmacologia , Hesperidina/farmacologia , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Interleucina-6 , Pulmão/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt , SARS-CoV-2 , Solventes , Glicoproteína da Espícula de Coronavírus , Fator de Transcrição AP-1
4.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164085

RESUMO

Osteoporosis is the result of an imbalance in the bone-remodeling process via an increase in osteoclastic activity and a decrease in osteoblastic activity. Our previous studies have shown that Perilla frutescens seed meal has anti-osteoclastogenic activity. However, the role of perilla leaf hexane fraction (PLH) in osteoporosis has not yet been investigated and reported. In this study, we aimed to investigate the effects of PLH in osteoclast differentiation and osteogenic potential using cell-based experiments in vitro. From HPLC analysis, we found that PLH contained high luteolin and baicalein. PLH was shown to inhibit RANKL-induced ROS production and tartrate-resistant acid phosphatase (TRAP)-positive multi-nucleated osteoclasts. Moreover, PLH significantly downregulated the RANKL-induced MAPK and NF-κB signaling pathways, leading to the attenuation of NFATc1 and MMP-9 expression. In contrast, PLH enhanced osteoblast function by regulating alkaline phosphatase (ALP) and restoring TNF-α-suppressed osteoblast proliferation and osteogenic potential. Thus, luteolin and baicalein-rich PLH inhibits osteoclast differentiation but promotes the function of osteoblasts. Collectively, our data provide new evidence that suggests that PLH may be a valuable anti-osteoporosis agent.


Assuntos
Osteogênese/efeitos dos fármacos , Osteoporose/prevenção & controle , Perilla frutescens/química , Extratos Vegetais/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
5.
J Fungi (Basel) ; 7(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806146

RESUMO

Auricularia auricula-judae, a nutrient-rich mushroom used in traditional medicine, is a macrofungi that exhibits various biological properties. In this study, we have reported on the mechanisms that promote the wound-healing effects of a water-soluble polysaccharide-rich extract obtained from A. auricula-judae (AAP). AAP contained high amounts of polysaccharides (349.83 ± 5.00 mg/g extract) with a molecular weight of 158 kDa. The main sugar composition of AAP includes mannose, galactose, and glucose. AAP displayed antioxidant activity in vitro and was able to abort UVB-induced intracellular ROS production in human fibroblasts in cellulo. AAP significantly promoted both fibroblast and keratinocyte proliferation, migration, and invasion, along with augmentation of the wound-healing process by increasing collagen synthesis and decreasing E-cadherin expression (All p < 0.05). Specifically, the AAP significantly accelerated the wound closure in a mice skin wound-healing model on day 9 (2.5%AAP, p = 0.031 vs. control) and day 12 (1% and 2.5%AAP with p = 0.009 and p < 0.001 vs. control, respectively). Overall, our results indicate that the wound-healing activities of AAP can be applied in an AAP-based product for wound management.

6.
J Fungi (Basel) ; 6(4)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287246

RESUMO

Antifungal proteins (AFPs) are able to inhibit a wide spectrum of fungi without significant toxicity to the hosts. This study examined the antifungal activity of AFPs isolated from a Thai medicinal plant, Rhinacanthus nasutus, against the human pathogenic fungus Talaromycesmarneffei. This dimorphic fungus causes systemic infections in immunocompromised individuals and is endemic in Southeast Asian countries. The R. nasutus crude protein extract inhibited the growth of T. marneffei. The anti-T. marneffei activity was completely lost when treated with proteinase K and pepsin, indicating that the antifungal activity was dependent on a protein component. The total protein extract from R. nasutus was partially purified by size fractionation to ≤10, 10-30, and ≥30 kDa fractions and tested for the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). All fractions showed anti-T. marneffei activity with the MIC and MFC values of 32 to 128 µg/mL and >128 µg/mL, respectively. In order to determine the mechanism of inhibition, all fractions were tested with T. marneffei mutant strains affected in G-protein signaling and cell wall integrity pathways. The anti-T. marneffei activity of the 10-30 kDa fraction was abrogated by deletion of gasA and gasC, the genes encoding alpha subunits of heterotrimeric G-proteins, indicating that the inhibitory effect is related to intracellular signaling through G-proteins. The work demonstrates that antifungal proteins isolated from R. nasutus represent sources for novel drug development.

7.
Molecules ; 24(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540489

RESUMO

Tumor necrosis factor-alpha (TNF-α) plays a key role in promoting tumor progression, such as stimulation of cell proliferation and metastasis via activation of NF-κB and AP-1. The proanthocyanidin-rich fraction obtained from red rice (PRFR) has been reported for its anti-tumor effects in cancer cells. This study investigated the molecular mechanisms associated with PRFR on cell survival and metastasis of TNF-α-induced A549 human lung adenocarcinoma. Notably, PRFR enhanced TNF-α-induced A549 cell death when compared with PRFP alone and caused a G0-G1 cell cycle arrest. Although, PRFR alone enhanced cell apoptosis, the combination treatment induced the cells that had been enhanced with PRFR and TNF-α to apoptosis that was less than PRFR alone and displayed a partial effect on caspase-8 activation and PARP cleavage. By using the autophagy inhibitor; 3-MA attenuated the effect of how PRFR enhanced TNF-α-induced cell death. This indicates that PRFR not only enhanced TNF-α-induced A549 cell death by apoptotic pathway, but also by induction autophagy. Moreover, PRFR also inhibited TNF-α-induced A549 cell invasion. This effect was associated with PRFR suppressed the TNF-α-induced level of expression for survival, proliferation, and invasive proteins. This was due to reduce of MAPKs, Akt, NF-κB, and AP-1 activation. Taken together, our results suggest that TNF-α-induced A549 cell survival and invasion are attenuated by PRFR through the suppression of the MAPKs, Akt, AP-1, and NF-κB signaling pathways.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Antineoplásicos Fitogênicos , Morte Celular Autofágica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Oryza/química , Extratos Vegetais , Proantocianidinas , Fator de Necrose Tumoral alfa/farmacologia , Células A549 , Adenocarcinoma de Pulmão/patologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proantocianidinas/química , Proantocianidinas/farmacologia
8.
Molecules ; 24(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813458

RESUMO

This study aims to determine the anti-carcinogenic effects of the proanthocyanidin-rich fraction (PRFR) obtained from red rice germ and bran extract on HepG2 cells. The PRFR obtained from red rice germ and bran extract could reduce the cell viability of HepG2 cells as shown by the IC50 value at 20 µg/mL. Notably, PRFR concentrations at 20 and 40 µg/mL significantly increased the number of cells in the G2/M phase from 25.7% ± 1.4%in the control group to 36.2% ± 3.4% (p < 0.01) and 48.9% ± 2.6% (p < 0.0001), respectively, suggesting that the cells were arrested in this phase, which was confirmed by the reduction of survival proteins, including cyclin B1 and cdc25. Moreover, the PRFR at 20 and 40 µg/mL could induce cell death via the apoptosis cascade, indicated by the percentage of total apoptotic cells from 9.9% ± 3.1% in the control group to 41.1 ± 3.9 (p < 0.0001) and 82.2% ± 5.8% (p < 0.0001), respectively. This was clarified by increasing apoptotic proteins (such as cleaved PARP-1, cleaved caspase-8 and cleaved caspase-3) and decreasing anti-apoptotic protein survivin without p53 alterations. These results demonstrated that the PRFR obtained from red rice germ and bran extract could inhibit cell proliferation and induce cell apoptosis in HepG2 cells via survivin, which could potentially serve as a new target for cancer therapeutics making it an excellent "lead candidate" molecule for in vivo proof-of concept studies.


Assuntos
Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Oryza/química , Extratos Vegetais/química , Proantocianidinas/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina B1/metabolismo , Células Hep G2 , Humanos , Extratos Vegetais/isolamento & purificação , Proantocianidinas/isolamento & purificação , Transdução de Sinais , Fosfatases cdc25/metabolismo
9.
Asian Pac J Cancer Prev ; 19(12): 3533-3543, 2018 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583680

RESUMO

Our previous study reported that stemofoline (STF) exhibited a synergistic effect with chemotherapeutic drugs in human multidrug-resistant (MDR) leukemic cells (K526/Adr) by inhibiting the function of P-glycoprotein, which is a membrane transporter that is overexpressed in several types of MDR cancers. This study further investigated the effects of a combination treatment of STF and doxorubicin (DOX) in vitro and in vivo. The combination treatment of 50 mg/kg of STF strongly enhanced the anti-tumor activity of DOX in SCID-beige mice bearing K562/Adr xenografts without additional toxicity when compared to the single treatment groups. Additionally, an examination of the proliferation markers (Ki67) and the apoptotic marker (TUNEL) in tumor tissues in each group revealed that the combination therapy significantly reduced Ki67 positive cells and increased apoptotic cells. From the in vitro experiments we also found that this combination treatment dramatically induced G1 and G2M arrest in K562/Adr when compared to a single treatment of DOX. STF treatment alone did not show any cytotoxic effect to the cells. These results suggest that the accumulation of DOX enhanced by STF was sufficient to induce cell cycle arrest in K562/Adr. These findings support our previous in vitro data and indicate the possibility of developing STF as an adjuvant therapy in cancer treatments.


Assuntos
Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucemia/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Marcação In Situ das Extremidades Cortadas/métodos , Células K562 , Antígeno Ki-67/metabolismo , Leucemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID
10.
Chem Pharm Bull (Tokyo) ; 66(2): 162-169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29386467

RESUMO

Crebanine (CN), tetrahydropalmatine (THP), O-methylbulbocapnine (OMBC) and N-methyl tetrahydropalmatine (NMTHP) are isoquinoline derived natural alkaloids isolated from tubers of Stephania venosa. We investigated chemo-sensitizing effects of these alkaloids in ovarian cancer cells and evaluated underlying molecular mechanisms involved in chemo-sensitivity. Detection of cell apoptosis was evaluated by using flow cytometry. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Chou-Talalay median effect principle was used to evaluate potential drug interactions. Protein analyses were performed on ovarian carcinoma cells using Western blotting upon treatment with anticancer drug and alkaloids. Aporphine alkaloids, such as CN and OMBC, enhanced cisplatin sensitivity in intrinsic cisplatin resistant SKOV3 cells, but not in cisplatin sensitive A2780 cells. Protoberberine alkaloids, such as THP and NMTHP, had no synergistic effect on cisplatin sensitivity in either cell line. Chemo-sensitizing effects of CN and OMBC in SKOV3 cells were mediated via activating apoptosis-induced cell death through caspase-3, -8 and cleaved poly ADP-ribose polymerase (PARP) and via inhibiting anti-apopotic and survival protein expression, such as Bcl-xL, Baculoviral IAP repeat-containing protein 3 (cIAP-2), survivin and interleukin (IL) -6. Cisplatin stimulated protein kinase B (Akt) and nuclear factor-kappaB (NF-κB) signaling pathways, but not mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1) and signal transducer and activator of transcription 3 (STAT3) in SKOV3 cells. Akt/NF-κB signaling was blocked by CN and OMBC leading to increased sensitization to cisplatin. These findings demonstrate that CN and OMBC sensitizes SKOV3 cells to cisplatin via inhibition of Akt/NF-κB signaling and the down regulation of NF-κB mediated gene products. Our results suggest that alkaloids obtained from S. venosa could be used as chemo-sensitizers in ovarian cancer to sensitize and minimize the dose related toxicity of platinum-based chemotherapeutic drugs.


Assuntos
Alcaloides/química , Antineoplásicos/química , Neoplasias Ovarianas/tratamento farmacológico , Extratos Vegetais/química , Stephania/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose , Alcaloides de Berberina/química , Linhagem Celular Tumoral , Sobrevivência Celular , Cisplatino/farmacologia , Regulação para Baixo , Feminino , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Phytomedicine ; 34: 182-190, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28899501

RESUMO

BACKGROUND: Multidrug resistance (MDR) is a major reason for the failure of chemotherapy in the treatment of cancer patients. P-gp over-expression in MDR cancer cells is a multifactorial phenomenon with biochemical resistance mechanisms. Stemofoline (STF), isolated from Stemona bukillii, has been reported to be an MDR reversing compound. PURPOSE: This study investigated whether other Stemona alkaloids that had been purified from Stemonaceae plants exerted MDR modulation activity. METHODS: MTT assay was performed to determine the MDR reversing property of the alkaloids. Modulation of P-gp function by these compounds was investigated using cell cycle analysis and P-gp fluorescent substrate accumulation assays. P-gp expression was determined by Western blot analysis. We preliminarily examined the safety of these compounds in normal human fibroblasts and human peripheral blood mononuclear cells (PBMCs) using the MTT assay, and in red blood cells (human and rat) through in vitro hemolysis assays. RESULTS: Three of the eight alkaloids tested, isostemofoline (ISTF), 11Z -didehydrostemofoline (11Z-DSTF) and 11E-didehydrostemofoline (11E-DSTF), enhanced the chemotherapeutic sensitivity of MDR leukemic K562/Adr cells, which overexpressed P-gp. The P-gp functional studies showed that these three alkaloids increased the accumulation of P-gp substrates, calcein-AM (C-AM) and rhodamine123 (Rho 123) in K562/Adr cells, while this effect was not seen in drug sensitive parental K562 cells. Whereas, the alkaloids did not alter P-gp expression as was determined by Western blotting analysis. CONCLUSION: The alkaloids reversed MDR via the inhibition of P-gp function. For pharmaceutical safety testing, the alkaloids were found to be not toxic to normal human fibroblasts and PBMCs. Moreover, the effective compounds did not induce hemolysis in either human or rat erythrocytes. These compounds may be introduced as potential candidate molecules for treating cancers exhibiting P-gp-mediated MDR.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Stemonaceae/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Alcaloides/farmacologia , Animais , Células Cultivadas , Doxorrubicina/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Células K562 , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Ratos
12.
BMC Complement Altern Med ; 16(1): 497, 2016 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-27912751

RESUMO

BACKGROUND: Natural products made from plant sources have been used in a variety of cosmetic applications as a source of nutrition and as a whitening agent. The flowers of Cassia fistula L, family Fabaceae, have been used as a traditional medicine for skin diseases and wound healing and have been reported to possess anti-oxidant properties. The anti-aging effect of C. fistula flower extract on human skin fibroblast was investigated. METHODS: The butanolic extraction of C. fistula flowers was completed and the active compounds were classified. The cytotoxicity of fibroblasts was evaluated by SRB assay for the purposes of selecting non-toxic doses for further experiments. The collagen and hyaluronic acid (HA) synthesis was then measured using the collagen kit and ELISA, respectively. Moreover, the enzyme activity, including collagenase, matrixmelloproteinase-2 (MMP-2) and tyrosinase, were also evaluated. RESULTS: It was found that the flower extract did not affect skin fibroblast cell growth (IC50 > 200 µg/mL). The results did show that the flower extract significantly increased collagen and HA synthesis in a dose dependent manner. The flower extract (50-200 µg/mL) also significantly inhibited collagenase and MMP-2 activity. Furthermore, this flower extract could inhibit the tyrosinase activity that causes hyperpigmentation, which induces skin aging. CONCLUSIONS: The C. fistula flower extract displayed a preventive effect when used for anti-aging purposes in human skin fibroblasts and may be an appropriate choice for cosmetic products that aim to provide whitening effects, and which are designated as anti-aging facial skin care products.


Assuntos
Cassia/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Produtos Biológicos/farmacologia , Butanóis , Células Cultivadas , Colágeno/biossíntese , Cosmecêuticos/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Ácido Hialurônico/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Pele/citologia
13.
Nat Prod Commun ; 11(12): 1877-1882, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30508356

RESUMO

Red rice has demonstrated several biological properties including anti-oxidant and anti-inflammation properties. However, the anti-photoaging activity has not yet been investigated; The aim of this study relates to the photo-protective effects of red rice extract (RRE) on UVB-induced skin aging. RRE was prepared and the active compounds and anti-oxidant activity were determined. The cytotoxicity of fibroblasts and secretions of IL-6 and IL-8 were evaluated. The effects of RRE on collagen and hyaluronic acid (HA) synthesis from fibroblasts were evaluated. Then, the collagenase and MMP-2 activity was determined. The effect of RRE on UV-induced MMP-1, nuclear factor kappa B (NF-κB), activator protein-I (AP-1) and phosphorylation of MAPK protein expression was determined by western blot analysis. The RRE exerted a free radical scavenging property. RRE significantly increased collagen and HA synthesis in UVB-irradiated human fibroblasts. Moreover, RRE significantly inhibited UVB induced MMP- 1 expression, MMP-2 and collagenase activity. Upon UVB irradiation, mitogen activated protein kinases (MAPKs) is activated and this pathway stimulates the expression of interleukin-6 and-8 (IL-6 and-8). Our results show that RRE decreases UVB-induced IL-6 and -8 production and the phosphorylation of c-Jun NH2- terminal kinase (JNK) and the p38 MAPK signaling process. In addition, RRE reduced UVB-induced activation of NF-icB and AP-I. RRE could suppress UV-induced inflammation and skin aging via the inhibition of the MAPK signaling pathway leading to the decrease of NF-cB and AP- 1 activation resulting in a decrease in ECM degradation and an increase in ECM synthesis.


Assuntos
Anti-Inflamatórios/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Oryza , Extratos Vegetais/farmacologia , Raios Ultravioleta , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , NF-kappa B/metabolismo , Fitoterapia , Transdução de Sinais , Pele/citologia , Envelhecimento da Pele/efeitos dos fármacos
14.
Asian Pac J Cancer Prev ; 16(10): 4277-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26028086

RESUMO

Anthocyanin, a phenolic compound, has been reported to have an anti-inflammatory effect against lipopolysaccharide (LPS) induced changes in immune cells. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Few research studies have concerned the anti-inflammation properties of colored rice extract as a functional material. Therefore, the purpose of this study was to examine anti-inflammatory effects of the polar fraction of black rice whole grain extracts (BR-WG-P) that features a high anthocyanin content. Our results showed that BR-WG-P significantly inhibited LPS-induced pro- inflammatory mediators, including production of NO and expression of iNOS and COX-2. In addition, secretion of pro-inflammatory cytokines including TNF-α and IL-6 was also significantly inhibited. Moreover, BR-WG-P and anthocyanin inhibited NF-kB and AP-1 translocation into the nucleus. BR-WG-P also decreased the phosphorylation of ERK, p38 and JNK in a dose dependent manner. These results suggested that BR-WG-P might suppress LPS-induced inflammation via the inhibition of the MAPK signaling pathway leading to decrease of NF-kB and AP-1 translocation. All of these results indicate that BR-WG-P exhibits therapeutic potential associated with the anthocyanin content in the extract for treating inflammatory diseases associated with cancer.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Oryza , Extratos Vegetais/farmacologia , Fator de Transcrição AP-1/metabolismo , Animais , Antocianinas/análise , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Grão Comestível , Flavonoides/análise , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/biossíntese , Fenóis/análise , Extratos Vegetais/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
15.
Asian Pac J Cancer Prev ; 15(21): 9249-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25422208

RESUMO

BACKGROUND: The encapsulation of curcumin (Cur) in polylactic-co-glycolic acid (PLGA) nanoparticles (Cur- NPs) was designed to improve its solubility and stability. Conjugation of the Cur-NPs with anti-P-glycoprotein (P-gp) antibody (Cur-NPs-APgp) may increase their targeting to P-gp, which is highly expressed in multidrug- resistance (MDR) cancer cells. This study determined whether Cur-NPs-APgp could overcome MDR in a human cervical cancer model (KB-V1 cells) in vitro and in vivo. MATERIALS AND METHODS: First, we determined the MDR- reversing property of Cur in P-gp-overexpressing KB-V1 cells in vitro and in vivo. Cur-NPs and Cur-NPs-APgp, in the range 150-180 nm, were constructed and subjected to an in vivo pharmacokinetic study compared with Cur. The in vitro and in vivo MDR-reversing properties of Cur-NPs and Cur-NPs-APgp were then investigated. Moreover, the stability of the NPs was determined in various solutions. RESULTS: The combined treatment of paclitaxel (PTX) with Cur dramatically decreased cell viability and tumor growth compared to PTX treatment alone. After intravenous injection, Cur-NPs-APgp and Cur-NPs could be detected in the serum up to 60 and 120 min later, respectively, whereas Cur was not detected after 30 min. Pretreatment with Cur-NPs-APgp, but not with NPs or Cur-NPs, could enhance PTX sensitivity both in vitro and in vivo. The constructed NPs remained a consistent size, proving their stability in various solutions. CONCLUSIONS: Our functional Cur-NPs-APgp may be a suitable candidate for application in a drug delivery system for overcoming drug resistance. The further development of Cur-NPs-APgp may be beneficial to cancer patients by leading to its use as either as a MDR modulator or as an anticancer drug.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/imunologia , Anticorpos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Ácido Láctico/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/administração & dosagem , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
16.
Asian Pac J Cancer Prev ; 15(11): 4601-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24969892

RESUMO

Red rice contains pharmacological substances including phenolics, oryzanol, tocotrienol and tocopherol. Recently, red rice extract has been employed as a source of antioxidants for inhibition of tumor growth. This study was carried out to evaluate the anti-invasion effects of red rice extract fractions on cancer cells. It was found that at 100 µg/ml of crude ethanolic extract (CEE), hexane fraction (Hex) and dichloromethane fraction (DCM) could reduce HT1080 and MDA-MB-231 cancer cell invasion. Hex and DCM revealed higher potency levels than CEE, whereas an ethyl acetate fraction (EtOAc) had no effect. Gelatin zymography revealed that Hex decreased the secretion and activity of matrix metalloproteinase-2 and -9 (MMP-2 and-9). In contrast, the DCM fraction exhibited slightly effect on MMPs secretion and had no effect on MMPs activity. Collagenase activity was significantly inhibited by the Hex and DCM fractions. High amounts of γ-oryzanol and γ-tocotrienol were found in the Hex and DCM fractions and demonstrated an anti-invasion property. On the other hand, proanthocyanidin was detected only in the CEE fraction and reduced MDA-MB-231 cells invasion property. These observations suggest that proanthocyanidin, γ-oryzanol and γ-tocotrienol in the red rice fractions might be responsible for the anti invasion activity. The red rice extract may have a potential to serve as a food-derived chemotherapeutic agent for cancer patients.


Assuntos
Antineoplásicos/farmacologia , Jasminum/química , Neoplasias/tratamento farmacológico , Oryza/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Cromanos/química , Cromanos/farmacologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/química , Proantocianidinas/química , Proantocianidinas/farmacologia , Vitamina E/análogos & derivados , Vitamina E/química , Vitamina E/farmacologia
17.
Pharm Biol ; 51(3): 400-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23406361

RESUMO

CONTEXT: Pseuduvaria rugosa (Blume) Merr. (Annonacaea) grows widely in the south and southeast regions of Thailand. Preliminary screening for biological activities revealed that crude hexane, ethyl acetate, and acetone extracts from mixtures of leaves and twigs of P. rugosa showed cytotoxicity. OBJECTIVE: Chemical constituents and their antiproliferative activity in K562, U937, and HL-60 human leukemic cell lines from P. rugosa were performed for the first time. MATERIALS AND METHODS: The isolated compounds were obtained from chromatographic separation. The structures were established by spectroscopic techniques including IR, UV, NMR together with 2D NMR (HMBC, COSY, and NOE) and MS. The K562, U937, and HL-60 cell lines were treated with isolated aporphine alkaloids (0-100 µg/mL) and cell viability was measured with the MTT assay. Cell cycle analysis was performed using propidium iodide (PI) based staining methods. RESULTS: Two known aporphine alkaloids, 1,2,3-trimethoxy-5-oxonoraporphine (1) and ouregidione (2) were isolated. Treatment of the cells with compounds 1 and 2 at a concentration of 100 µg/mL for 72 h reduced the viability of K562, U937, and HL-60 cell lines to 63 and 64, 38 and 66, and 49 and 64%, respectively. In addition, compounds 1 and 2, at a concentration of 100 µg/mL, exposed to U937 and HL-60 cell lines showed cell cycle arrest. The U937 cell line treated with compounds 1 and 2 increased significantly the proportion of the cell in S phase, whereas the HL-60 cell line-induced G2/M and G1 phase, respectively. DISCUSSION AND CONCLUSION: The results showed that 1,2,3-trimethoxy-5-oxonoraporphine and ouregidione-induced cytotoxicity with HL-60, U937, and K562 cells where 1,2,3-trimethoxy-5-oxonoraporphine was more active than ouregidione.


Assuntos
Annonaceae/química , Antineoplásicos Fitogênicos/farmacologia , Aporfinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Leucemia/tratamento farmacológico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Aporfinas/química , Aporfinas/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Caules de Planta/química , Porfirinas/química , Porfirinas/isolamento & purificação , Porfirinas/farmacologia , Solventes/química , Tailândia
18.
Arch Pharm Res ; 33(7): 989-98, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20661707

RESUMO

Matrix metalloproteinase-3 (MMP-3) is a key enzyme with important implications in the invasion and metastasis of breast cancer cells. Curcumin (Cur), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are major forms of curcuminoids found in turmeric powder with reported anticancer activity. This study focuses on the comparative effect of Cur, DMC and BDMC on the modulation of MMP-3 activity and its secretion in MDA-MB-231 breast cancer cells. MMP-3 levels were determined by casein zymography, ELISA and western blotting. Analysis of MMP-3 expression by casein zymography revealed high expression in MDA-MB-231 invasive breast carcinoma cells, but not in MCF-7 non-invasive breast cancer cells. ELISA assays showed MMP-3 levels were significantly decreased in all curcuminoid treatments. Using zymography, treatment with non-toxic doses revealed that every curcuminoid compound except Cur reduced MMP-3 levels. Moreover, the result from western blot analysis confirmed that only DMC and BDMC reduced MMP-3 secretion in MDA-MB-231 cells, but Cur did not have any effect. MMP-3 activity revealed that none of the curcuminoids showed significant effects. However, treatment of the cells with Cur, DMC and BDMC exhibited a significant inhibition of cell invasion and motility with DMC and BDMC being more potent. These results suggest that Cur, DMC, and BDMC may be used as MMP-3 inhibitors to modulate MMP-3 expression.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/enzimologia , Curcuma , Curcumina/análogos & derivados , Curcumina/uso terapêutico , Inibidores de Metaloproteinases de Matriz , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/isolamento & purificação , Diarileptanoides , Relação Dose-Resposta a Droga , Feminino , Humanos , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Células NIH 3T3 , Estadiamento de Neoplasias
19.
Eur J Pharmacol ; 627(1-3): 8-15, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19818349

RESUMO

Demethoxycurcumin (DMC) is one of the main active compounds of curcuminoids found in turmeric powder, which is used as a spice in Asian cooking and traditional medicine. Recent studies reveal that DMC has several biological activities including anti-inflammation and anti-cancer activities. However, the molecular mechanism by which DMC has anti-metastasis activity in breast cancer cells remains poorly understood. Here, we report for the first time that DMC inhibited adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. For cancer cell migration and invasion, extracellular matrix (ECM) degradation processes are required. MDA-MB-231 cells treated with DMC had decreased levels of ECM degradation-associated proteins including matrix metalloproteinase-9 (MMP-9), membrane type-1 matrix metalloproteinase (MT1-MMP), urokinase plasminogen activator (uPA) and uPA receptor (uPAR), while the level of uPA inhibitor (PAI-1) was up-regulated. Moreover, DMC also reduced the expression of intercellular adhesion molecule-1 (ICAM-1) and chemokine receptor 4, (CXCR4), which is involved in modulation of the tumor metastasis process. We also found that DMC treatment inhibited the DNA binding activity of nuclear factor-kappa B (NF-kappaB), which is known to mediate the expression of MMPs, uPA, uPAR, ICAM-1, and CXCR4. These findings strongly suggest that the mechanism of DMC-mediated anti-invasive activity involves modulation of the expression of invasion-associated proteins, possibly by targeting NF-kappaB in MDA-MB-231 cells.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/farmacologia , DNA/metabolismo , Diarileptanoides , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica , Receptores CXCR4/metabolismo
20.
Cancer Res ; 69(16): 6581-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19654295

RESUMO

Identification of the active component and mechanisms of action of traditional medicines is highly desirable. We investigated whether zerumbone, a sesquiterpene from tropical ginger, can enhance the anticancer effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found that zerumbone potentiated TRAIL-induced apoptosis in human HCT116 colon cancer cells and that this correlated with the up-regulation of TRAIL death receptor (DR) 4 and DR5. Induction of DRs occurred at the transcriptional level, and this induction was not cell-type specific, as its expression was also up-regulated in prostate, kidney, breast, and pancreatic cancer cell lines. Deletion of DR5 or DR4 by small interfering RNA significantly reduced the apoptosis induced by TRAIL and zerumbone. In addition to up-regulating DRs, zerumbone also significantly down-regulated the expression of cFLIP but not that of other antiapoptotic proteins. The induction of both DRs by zerumbone was abolished by glutathione and N-acetylcysteine (NAC), and this correlated with decreased TRAIL-induced apoptosis, suggesting a critical role of reactive oxygen species. Inhibition of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase but not of Jun NH(2)-terminal kinase abolished the effect of zerumbone on DR induction. Zerumbone also induced the p53 tumor suppressor gene but was found to be optional for DR induction or for enhancement of TRAIL-induced apoptosis. Both bax and p21, however, were required for zerumbone to stimulate TRAIL-induced apoptosis. Overall, our results show that zerumbone can potentiate TRAIL-induced apoptosis through the reactive oxygen species-mediated activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase leading to DR4 and DR5 induction and resulting in enhancement of the anticancer effects of TRAIL.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Espécies Reativas de Oxigênio/farmacologia , Receptores de Morte Celular/genética , Sesquiterpenos/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Receptores de Morte Celular/antagonistas & inibidores , Receptores de Morte Celular/metabolismo , Sesquiterpenos/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA