Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Circ Res ; 132(4): 415-431, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36700539

RESUMO

BACKGROUND: Chronic kidney disease (CKD) accelerates vascular calcification via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways. METHODS AND RESULTS: We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. Cultures of A10 embryonic rat VSMCs showed increased calcification and transcription of osterix (Sp7), osteocalcin (Bglap), and osteopontin (Spp1) when treated with rat CKD serum. sEVs, but not sEV-depleted serum, accelerated calcification in VSMCs. Intraperitoneal administration of a neutral sphingomyelinase and biogenesis/release inhibitor of sEVs, GW4869 (2.5 mg/kg per 2 days), inhibited thoracic aortic calcification in CKD mice under a high-phosphorus diet. GW4869 induced a nearly full recovery of calcification and transcription of osteogenic marker genes. In CKD, the miRNA transcriptome of sEVs revealed a depletion of 4 miRNAs, miR-16-5p, miR-17~92 cluster-originated miR-17-5p/miR-20a-5p, and miR-106b-5p. Their expression decreased in sEVs from CKD patients as kidney function deteriorated. Transfection of VSMCs with each miRNA-mimic mitigated calcification. In silico analyses revealed VEGFA (vascular endothelial growth factor A) as a convergent target of these miRNAs. We found a 16-fold increase in VEGFA transcription in the thoracic aorta of CKD mice under a high-phosphorus diet, which GW4869 reversed. Inhibition of VEGFA-VEGFR2 signaling with sorafenib, fruquintinib, sunitinib, or VEGFR2-targeted siRNA mitigated calcification in VSMCs. Orally administered fruquintinib (2.5 mg/kg per day) for 4 weeks suppressed the transcription of osteogenic marker genes in the mouse aorta. The area under the curve of miR-16-5p, miR-17-5p, 20a-5p, and miR-106b-5p for the prediction of abdominal aortic calcification was 0.7630, 0.7704, 0.7407, and 0.7704, respectively. CONCLUSIONS: The miRNA transcriptomic signature of circulating sEVs uncovered their pathologic role, devoid of the calcification-protective miRNAs that target VEGFA signaling in CKD-driven vascular calcification. These sEV-propagated miRNAs are potential biomarkers and therapeutic targets for vascular calcification.


Assuntos
Vesículas Extracelulares , MicroRNAs , Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Calcificação Vascular/metabolismo , Insuficiência Renal Crônica/metabolismo , Vesículas Extracelulares/metabolismo , Fósforo/metabolismo , Miócitos de Músculo Liso/metabolismo
2.
Mol Ther Nucleic Acids ; 28: 910-919, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35694210

RESUMO

Neuropathic pain, a heterogeneous condition, affects 7%-10% of the general population. To date, efficacious and safe therapeutic approaches remain limited. Antisense oligonucleotide (ASO) therapy has opened the door to treat spinal muscular atrophy, with many ongoing clinical studies determining its therapeutic utility. ASO therapy for neuropathic pain and peripheral nerve disease requires efficient gene delivery and knockdown in both the dorsal root ganglion (DRG) and sciatic nerve, key tissues for pain signaling. We previously developed a new DNA/RNA heteroduplex oligonucleotide (HDO) technology that achieves highly efficient gene knockdown in the liver. Here, we demonstrated that intravenous injection of HDO, comprising an ASO and its complementary RNA conjugated to α-tocopherol, silences endogenous gene expression more than 2-fold in the DRG, and sciatic nerve with higher potency, efficacy, and broader distribution than ASO alone. Of note, we observed drastic target suppression in all sizes of neuronal DRG populations by in situ hybridization. Our findings establish HDO delivery as an investigative and potentially therapeutic platform for neuropathic pain and peripheral nerve disease.

3.
Nat Commun ; 12(1): 7344, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937876

RESUMO

Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.


Assuntos
Linfócitos/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , Oligonucleotídeos/metabolismo , RNA/metabolismo , Administração Intravenosa , Transferência Adotiva , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Endocitose/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Humanos , Integrina alfa4/genética , Integrina alfa4/metabolismo , Células Jurkat , Masculino , Camundongos Endogâmicos C57BL , Ácidos Nucleicos Heteroduplexes/administração & dosagem , Ácidos Nucleicos Heteroduplexes/farmacocinética , Ácidos Nucleicos Heteroduplexes/farmacologia , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/farmacologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/patologia , Distribuição Tecidual/efeitos dos fármacos
4.
Sci Rep ; 11(1): 14237, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244578

RESUMO

Brain endothelial cells (BECs) are involved in the pathogenesis of ischemic stroke. Recently, several microRNAs (miRNAs) in BECs were reported to regulate the endothelial function in ischemic brain. Therefore, modulation of miRNAs in BECs by a therapeutic oligonucleotide to inhibit miRNA (antimiR) could be a useful strategy for treating ischemic stroke. However, few attempts have been made to achieve this strategy via systemic route due to lack of efficient delivery-method toward BECs. Here, we have developed a new technology for delivering an antimiR into BECs and silencing miRNAs in BECs, using a mouse ischemic stroke model. We designed a heteroduplex oligonucleotide, comprising an antimiR against miRNA-126 (miR-126) known as the endothelial-specific miRNA and its complementary RNA, conjugated to α-tocopherol as a delivery ligand (Toc-HDO targeting miR-126). Intravenous administration of Toc-HDO targeting miR-126 remarkably suppressed miR-126 expression in ischemic brain of the model mice. In addition, we showed that Toc-HDO targeting miR-126 was delivered into BECs more efficiently than the parent antimiR in ischemic brain, and that it was delivered more effectively in ischemic brain than non-ischemic brain of this model mice. Our study highlights the potential of this technology as a new clinical therapeutic option for ischemic stroke.


Assuntos
MicroRNAs/genética , Oligonucleotídeos/química , Oligonucleotídeos/uso terapêutico , alfa-Tocoferol/química , Animais , Encéfalo/metabolismo , Linhagem Celular , Imuno-Histoquímica , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Control Release ; 330: 812-820, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33417983

RESUMO

Downsizing nanocarriers is a promising strategy for systemically targeting fibrotic cancers, such as pancreatic cancer, owing to enhanced tissue permeability. We recently developed a small oligonucleotide nanocarrier called a unit polyion complex (uPIC) using a single oligonucleotide molecule and one or two molecule(s) of two-branched poly(ethylene glycol)-b-poly(l-lysine) (bPEG-PLys). The uPIC is a dynamic polyion-pair equilibrated with free bPEG-PLys, and thus, is highly stabilized in the presence of excess amounts of free bPEG-PLys in the bloodstream. However, the dynamic polyion-pairing behavior of uPICs needs to be further investigated for longevity in the bloodstream, especially under lower amounts of free bPEG-PLys. Herein, the polyion-pairing behavior of uPICs was investigated by highlighting oligonucleotide stability and negative charge number. To this end, small interfering RNA (siRNA) and antisense oligonucleotides (ASO) were chemically modified to acquire nuclease resistance, and the ASO was hybridized with complementary RNA (cRNA) to form a hetero-duplex oligonucleotide (HDO) with twice the negative charges. While all oligonucleotides similarly formed sub-20 nm-sized uPICs from a single oligonucleotide molecule, the association number of bPEG-PLys (ANbPEG-PLys) in uPICs varied based on the negative charge number of oligonucleotides (N-), that is, ANbPEG-PLys = ~2 at N- = ~40 (i.e., siRNA and HDO) and ANbPEG-PLys = ~1 at N- = 20 (i.e., ASO), presumably because of the balanced charge neutralization between the oligonucleotide and bPEG-PLys with a positive charge number (N+) of ~20. Ultimately, the uPICs prepared from the chemically modified oligonucleotide with higher negative charges showed considerably longer blood retention than those from the control oligonucleotides without chemical modifications or with lower negative charges. The difference in the blood circulation properties of uPICs was more pronounced under lower amounts of free bPEG-PLys. These results demonstrate that the chemical modification and higher negative charge in oligonucleotides facilitated the polyion-pairing between the oligonucleotide and bPEG-PLys under harsh biological conditions, facilitating enhanced blood circulation of uPICs.


Assuntos
Oligonucleotídeos , Polietilenoglicóis , Micelas , Polilisina , RNA Interferente Pequeno
6.
Mol Ther ; 29(2): 838-847, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290725

RESUMO

We recently reported the antisense properties of a DNA/RNA heteroduplex oligonucleotide consisting of a phosphorothioate DNA-gapmer antisense oligonucleotide (ASO) strand and its complementary phosphodiester RNA/phosphorothioate 2'-O-methyl RNA strand. When α-tocopherol was conjugated with the complementary strand, the heteroduplex oligonucleotide silenced the target RNA more efficiently in vivo than did the parent single-stranded ASO. In this study, we designed a new type of the heteroduplex oligonucleotide, in which the RNA portion of the complementary strand was replaced with phosphodiester DNA, yielding an ASO/DNA double-stranded structure. The ASO/DNA heteroduplex oligonucleotide showed similar activity and liver accumulation as did the original ASO/RNA design. Structure-activity relationship studies of the complementary DNA showed that optimal increases in the potency and the accumulation were seen when the flanks of the phosphodiester DNA complement were protected using 2'-O-methyl RNA and phosphorothioate modifications. Furthermore, evaluation of the degradation kinetics of the complementary strands revealed that the DNA-complementary strand as well as the RNA strand were completely cleaved in vivo. Our results expand the repertoire of chemical modifications that can be used with the heteroduplex oligonucleotide technology, providing greater design flexibility for future therapeutic applications.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Oligodesoxirribonucleotídeos/genética , Células Cultivadas , DNA/administração & dosagem , Inativação Gênica , Oligodesoxirribonucleotídeos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética
7.
Methods Mol Biol ; 2176: 113-119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32865786

RESUMO

Heteroduplex oligonucleotides (HDOs) were a novel type of nucleic acid drugs based on an antisense oligonucleotide (ASO) strand and its complementary RNA (cRNA ) strand. HDOs were originally designed to improve the properties of RNase H-dependent ASOs and we reported in our first paper that HDOs conjugated with an α-tocopherol ligand (Toc-HDO ) based on a gapmer ASO showed 20 times higher silencing effect to liver apolipoprotein B (apoB) mRNA in vivo than the parent ASO. Thereafter the HDO strategy was found to be also effective for improving the properties of ASOs modulating blood-brain barrier function and ASO antimiRs which are RNase H-independent ASOs. Therefore, the HDO strategy has been shown to be versatile technology platform to develop effective nucleic acid drugs.


Assuntos
Inativação Gênica/efeitos dos fármacos , Ácidos Nucleicos Heteroduplexes/farmacologia , Oligonucleotídeos Antissenso/farmacologia , RNA/farmacologia , Animais , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Terapia Genética/métodos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/uso terapêutico , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/uso terapêutico , RNA/química , RNA/uso terapêutico
8.
Sci Rep ; 8(1): 4377, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531265

RESUMO

The blood-brain barrier (BBB) is increasingly regarded as a dynamic interface that adapts to the needs of the brain, responds to physiological changes, and gets affected by and can even promote diseases. Modulation of BBB function at the molecular level in vivo is beneficial for a variety of basic and clinical studies. Here we show that our heteroduplex oligonucleotide (HDO), composed of an antisense oligonucleotide and its complementary RNA, conjugated to α-tocopherol as a delivery ligand, efficiently reduced the expression of organic anion transporter 3 (OAT3) gene in brain microvascular endothelial cells in mice. This proof-of-concept study demonstrates that intravenous administration of chemically synthesized HDO can remarkably silence OAT3 at the mRNA and protein levels. We also demonstrated modulation of the efflux transport function of OAT3 at the BBB in vivo. HDO will serve as a novel platform technology to advance the biology and pathophysiology of the BBB in vivo, and will also open a new therapeutic field of gene silencing at the BBB for the treatment of various intractable neurological disorders.


Assuntos
Barreira Hematoencefálica/metabolismo , Oligonucleotídeos/metabolismo , Animais , Barreira Hematoencefálica/fisiologia , Células Endoteliais/metabolismo , Inativação Gênica , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , RNA Complementar/metabolismo
9.
Nat Commun ; 6: 7969, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26258894

RESUMO

Antisense oligonucleotides (ASOs) are recognized therapeutic agents for the modulation of specific genes at the post-transcriptional level. Similar to any medical drugs, there are opportunities to improve their efficacy and safety. Here we develop a short DNA/RNA heteroduplex oligonucleotide (HDO) with a structure different from double-stranded RNA used for short interfering RNA and single-stranded DNA used for ASO. A DNA/locked nucleotide acid gapmer duplex with an α-tocopherol-conjugated complementary RNA (Toc-HDO) is significantly more potent at reducing the expression of the targeted mRNA in liver compared with the parent single-stranded gapmer ASO. Toc-HDO also improves the phenotype in disease models more effectively. In addition, the high potency of Toc-HDO results in a reduction of liver dysfunction observed in the parent ASO at a similar silencing effect. HDO technology offers a novel concept of therapeutic oligonucleotides, and the development of this molecular design opens a new therapeutic field.


Assuntos
Inativação Gênica/fisiologia , Ácidos Nucleicos Heteroduplexes/fisiologia , Oligonucleotídeos , alfa-Tocoferol/farmacologia , Animais , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Sequência de Bases , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Humanos , Hipercolesterolemia/induzido quimicamente , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , alfa-Tocoferol/química
11.
Biochem Biophys Res Commun ; 405(2): 204-9, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21219850

RESUMO

Systemic injections of AAV vectors generally transduce to the liver more effectively than to cardiac and skeletal muscles. The short hairpin RNA (shRNA)-expressing AAV9 (shRNA-AAV9) can also reduce target gene expression in the liver, but not enough in cardiac or skeletal muscles. Higher doses of shRNA-AAV9 required for inhibiting target genes in cardiac and skeletal muscles often results in shRNA-related toxicity including microRNA oversaturation that can induce fetal liver failure. In this study, we injected high-dose shRNA-AAV9 to neonates and efficiently silenced genes in cardiac and skeletal muscles without inducing liver toxicity. This is because AAV is most likely diluted or degraded in the liver than in cardiac or skeletal muscle during cell division after birth. We report that this systemically injected shRNA-AAV method does not induce any major side effects, such as liver dysfunction, and the dose of shRNA-AAV is sufficient for gene silencing in skeletal and cardiac muscle tissues. This novel method may be useful for generating gene knockdown in skeletal and cardiac mouse tissues, thus providing mouse models useful for analyzing diseases caused by loss-of-function of target genes.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Dependovirus , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos ICR , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/genética , Superóxido Dismutase-1
12.
J Biol Chem ; 284(48): 33400-8, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19679659

RESUMO

Increased oxidative damage is a prominent and early feature in Alzheimer disease. We previously crossed Alzheimer disease transgenic (APPsw) model mice with alpha-tocopherol transfer protein knock-out (Ttpa(-/-)) mice in which lipid peroxidation in the brain was significantly increased. The resulting double-mutant (Ttpa(-/-)APPsw) mice showed increased amyloid beta (Abeta) deposits in the brain, which was ameliorated with alpha-tocopherol supplementation. To investigate the mechanism of the increased Abeta accumulation, we here studied generation, degradation, aggregation, and efflux of Abeta in the mice. The clearance of intracerebral-microinjected (125)I-Abeta(1-40) from brain was decreased in Ttpa(-/-) mice to be compared with wild-type mice, whereas the generation of Abeta was not increased in Ttpa(-/-)APPsw mice. The activity of an Abeta-degrading enzyme, neprilysin, did not decrease, but the expression level of insulin-degrading enzyme was markedly decreased in Ttpa(-/-) mouse brain. In contrast, Abeta aggregation was accelerated in Ttpa(-/-) mouse brains compared with wild-type brains, and well known molecules involved in Abeta transport from brain to blood, low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein, were up-regulated in the small vascular fraction of Ttpa(-/-) mouse brains. Moreover, the disappearance of intravenously administered (125)I-Abeta(1-40) was decreased in Ttpa(-/-) mice with reduced translocation of LRP-1 in the hepatocytes. These results suggest that lipid peroxidation due to depletion of alpha-tocopherol impairs Abeta clearances from the brain and from the blood, possibly causing increased Abeta accumulation in Ttpa(-/-)APPsw mouse brain and plasma.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Tocoferóis/metabolismo , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/farmacocinética , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Northern Blotting , Western Blotting , Encéfalo/efeitos dos fármacos , Proteínas de Transporte/genética , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , alfa-Tocoferol/administração & dosagem , alfa-Tocoferol/farmacologia
13.
Biochem Biophys Res Commun ; 350(3): 530-6, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17026966

RESUMO

Increased oxidative damage is a prominent and early feature in Alzheimer disease (AD). However, whether it is a primary cause or merely a downstream consequence in AD pathology is still unknown. We previously generated alpha-tocopherol transfer protein knockout (Ttpa-/-) mice, in which lipid peroxidation in the brain was significantly increased by complete depletion of alpha-tocopherol (alpha-Toc). Here we crossed AD transgenic (APPsw) model mice (Tg2576) with Ttpa-/- mice. The resulting double-mutant (Ttpa-/- APPsw) mice showed earlier and more severe cognitive dysfunction in the Morris water maze, novel-object recognition, and contextual fear conditioning tests. They also showed increased amyloid beta-peptide (Abeta) deposits in the brain by immunohistochemical analysis, which was ameliorated with alpha-Toc supplementation. In this report we provide clear evidence indicating that chronic lipid peroxidation due to alpha-Toc depletion enhances AD phenotype in a mouse model.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Deficiência de Vitamina E/patologia , Deficiência de Vitamina E/fisiopatologia , Doença de Alzheimer/complicações , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Deficiência de Vitamina E/complicações
14.
Biochem Biophys Res Commun ; 340(1): 263-7, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16364250

RESUMO

Brain capillary endothelial cells (BCECs) play an important role in blood-brain barrier (BBB) functions and pathophysiologic mechanisms in brain ischemia and inflammation. We try to suppress gene expression in BCECs by intravenous application of small interfering RNA (siRNA). After injection of large dose siRNA with hydrodynamic technique to mouse, suppression of endogenous protein and the BBB function of BCECs was investigated. The brain-to-blood transport function of organic anion transporter 3 (OAT3) that expressed in BCECs was evaluated by Brain Efflux Index method in mouse. The siRNA could be delivered to BCECs and efficiently inhibited endogenously expressed protein of BCECs. The suppression effect of siRNA to OAT3 is enough to reduce the brain-to-blood transport of OAT3 substrate, benzylpenicillin at BBB. The in vivo siRNA-silencing method with hydrodynamic technique may be useful for the study of BBB function and gene therapy targeting BCECs.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/irrigação sanguínea , Células Endoteliais/fisiologia , Inativação Gênica , Marcação de Genes/métodos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Superóxido Dismutase/metabolismo , Animais , Encéfalo/fisiologia , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Humanos , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1
15.
Neurosci Lett ; 341(1): 74-8, 2003 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-12676347

RESUMO

Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease caused by small CAG repeat expansion in the alpha1A calcium channel gene. We found that the human alpha1A calcium channel protein expressed in human embryonic kidney 293T cells produces a 75 kDa C-terminal fragment. This fragment is more toxic to cells than the full-length alpha1A calcium channel, regardless of polyglutamine tract length. In cells stably transfected with plasmids of full-length alpha1A calcium channel cDNAs, the C-terminal fragment protein is present in the mutant transformant but not in the wild-type one, indicative that this C-terminal fragment with the expanded polyglutamine tract is more resistant to proteolysis than that with the normal sized polyglutamine tract. We speculate that the toxic C-terminal fragment, in which resistance to proteolysis is rendered by the expanded polyglutamine, has a key role in the pathological mechanism of SCA6.


Assuntos
Canais de Cálcio/metabolismo , Canais de Cálcio/toxicidade , Ataxias Espinocerebelares/metabolismo , Canais de Cálcio/genética , Linhagem Celular , DNA Complementar/genética , DNA Complementar/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ataxias Espinocerebelares/genética , Transfecção/métodos , Expansão das Repetições de Trinucleotídeos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA