Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 755, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191891

RESUMO

Skeletal muscle is one of the largest metabolic tissues in mammals and is composed of four different types of muscle fibers (types 1, 2A, 2X, and 2B); however, type 2B is absent in humans. Given that slow-twitch fibers are superior to fast-twitch fibers in terms of oxidative metabolism and are rich in mitochondria, shift of muscle fiber types in direction towards slower fiber types improves metabolic disorders and endurance capacity. We previously had reported that oleic acid supplementation increases type 1 fiber formation in C2C12 myotubes; however, its function still remains unclear. This study aimed to determine the effect of oleic acid on the muscle fiber types and endurance capacity. An in vivo mouse model was used, and mice were fed a 10% oleic acid diet for 4 weeks. Two different skeletal muscles, slow soleus muscle with the predominance of slow-twitch fibers and fast extensor digitorum longus (EDL) muscle with the predominance of fast-twitch fibers, were used. We found that dietary oleic acid intake improved running endurance and altered fiber type composition of muscles, the proportion of type 1 and 2X fibers increased in the soleus muscle and type 2X increased in the EDL muscle. The fiber type shift in the EDL muscle was accompanied by an increased muscle TAG content. In addition, blood triacylglycerol (TAG) and non-esterified fatty acid levels decreased during exercise. These changes suggested that lipid utilization as an energy substrate was enhanced by oleic acid. Increased proliferator-activated receptor γ coactivator-1ß protein levels were observed in the EDL muscle, which potentially enhanced the fiber type transitions towards type 2X and muscle TAG content. In conclusion, dietary oleic acid intake improved running endurance with the changes of muscle fiber type shares in mice. This study elucidated a novel functionality of oleic acid in skeletal muscle fiber types. Further studies are required to elucidate the underlying mechanisms. Our findings have the potential to contribute to the field of health and sports science through nutritional approaches, such as the development of supplements aimed at improving muscle function.


Assuntos
Fibras Musculares Esqueléticas , Ácido Oleico , Humanos , Animais , Camundongos , Ácido Oleico/farmacologia , Músculo Esquelético , Respiração Celular , Suplementos Nutricionais , Mamíferos
2.
Nutr Res ; 112: 11-19, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934523

RESUMO

Olive oil is one of the most widely researched Mediterranean diet components in both experimental models and clinical studies. However, the relationship between dietary olive oil intake and liver function in a healthy state of the body remains unclear. Because men are at a greater risk of developing hepatic diseases than women, and because hepatic metabolism is regulated by sex hormones, we hypothesized that olive oil-induced changes in hepatic metabolism would differ by sex. To test our hypothesis, 12-week-old C57BL/6JJcl male and female mice were fed an olive oil diet for 4 weeks. Blood was collected and serum biochemical components were analyzed. Hepatic lipid accumulation was determined via histological analysis using Sudan III staining. Finally, transcript expression levels of hepatic metabolism-related genes were analyzed using quantitative polymerase chain reaction. We observed significant increased hepatic lipid droplet accumulation in olive oil-fed female mice. Serum biochemical and liver messenger RNA expression analyses revealed that the hepatic lipid accumulation was nonpathological and did not involve inflammation. Moreover, the expression of genes related to triacylglycerol and fatty acid synthesis (Dgat1, Dgat2, Agpat3, and Fasn) was significantly upregulated in the liver of olive oil-fed female mice compared with control female mice. Our study demonstrates female-specific hepatic lipid accumulation without liver impairment in a dietary olive oil-fed mouse model. These findings provide a deeper mechanistic understanding of sex-dependent hepatic lipid metabolism of dietary oils.


Assuntos
Gorduras Insaturadas na Dieta , Hipercolesterolemia , Metabolismo dos Lipídeos , Azeite de Oliva , Animais , Feminino , Masculino , Camundongos , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Azeite de Oliva/administração & dosagem , Azeite de Oliva/efeitos adversos , Óleos de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA