Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 13(7): 7591-7602, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31262169

RESUMO

Although a few nanomedicines have been approved for clinical use in cancer treatment, that recognizes improved patient safety through targeted delivery, their improved efficacy over conventional drugs has remained marginal. One of the typical drawbacks of nanocarriers for cancer therapy is a low drug-loading capacity that leads to insufficient efficacy and requires an increase in dosage and/or frequency of administration, which in turn increases carrier toxicity. In contrast, elevating drug-loading would cause the risk of nanocarrier instability, resulting in low efficacy and off-target toxicity. This intractable drug-to-carrier ratio has imposed constraints on the design and development of nanocarriers. However, if the nanocarrier has intrinsic therapeutic effects, the efficacy would be synergistically augmented with less concern for the drug-to-carrier ratio. Sunitinib-loaded micellar nanocomplex (SU-MNC) was formed using poly(ethylene glycol)-conjugated epigallocatechin-3-O-gallate (PEG-EGCG) as such a carrier. SU-MNC specifically inhibited the vascular endothelial growth factor-induced proliferation of endothelial cells, exhibiting minimal cytotoxicity to normal renal cells. SU-MNC showed enhanced anticancer effects and less toxicity than SU administered orally/intravenously on human renal cell carcinoma-xenografted mice, demonstrating more efficient effects on anti-angiogenesis, apoptosis induction, and proliferation inhibition against tumors. In comparison, a conventional nanocarrier, SU-loaded polymeric micelle (SU-PM) comprised of PEG-b-poly(lactic acid) (PEG-PLA) copolymer, only reduced toxicity with no elevated efficacy, despite comparable drug-loading and tumor-targeting efficiency to SU-MNC. Improved efficacy of SU-MNC was ascribed to the carrier-drug synergies with the high-performance carrier of PEG-EGCG besides tumor-targeted delivery.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Renais/tratamento farmacológico , Nanopartículas/química , Sunitinibe/farmacologia , Chá/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Catequina/análogos & derivados , Catequina/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/química , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Micelas , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Tamanho da Partícula , Polietilenoglicóis/química , Sunitinibe/administração & dosagem , Sunitinibe/química , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Adv Mater ; 30(14): e1706963, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29473233

RESUMO

Low drug loading and instability in blood circulation are two key challenges that impede the successful clinical translation of nanomedicine, as they result in only marginal therapeutic efficacy and toxic side effects associated with premature drug leakage, respectively. Herein, highly stable and ultrahigh drug loading micellar nanocomplexes (MNCs) based on the self-assembly of the anticancer drug doxorubicin (DOX) and a poly(ethylene glycol)-epigallocatechin-3-O-gallate (EGCG) conjugate are developed. The formation of these MNCs is facilitated by strong favorable intermolecular interactions between the structurally similar aromatic EGCG and DOX molecules, which impart exceptionally high drug-loading capability of up to 88% and excellent thermodynamic and kinetic stability. Unlike two clinical formulations of DOX-free DOX and liposomal DOX, which are not effective below their lethal dosages, these DOX-loaded MNCs demonstrate significant tumor growth inhibition in vivo on a human liver cancer xenograft mouse model with minimal unwanted toxicity. Overall, these MNCs can represent a safe and effective strategy to deliver DOX for cancer therapy.


Assuntos
Nanoestruturas , Animais , Catequina , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Camundongos , Micelas , Neoplasias , Polietilenoglicóis , Chá
3.
Nat Nanotechnol ; 9(11): 907-912, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282044

RESUMO

When designing drug carriers, the drug-to-carrier ratio is an important consideration, because the use of high quantities of carriers can result in toxicity as a consequence of poor metabolism and elimination of the carriers. However, these issues would be of less concern if both the drug and carrier had therapeutic effects. (-)-Epigallocatechin-3-O-gallate (EGCG), a major ingredient of green tea, has been shown, for example, to possess anticancer effects, anti-HIV effects, neuroprotective effects and DNA-protective effects. Here, we show that sequential self-assembly of the EGCG derivative with anticancer proteins leads to the formation of stable micellar nanocomplexes, which have greater anticancer effects in vitro and in vivo than the free protein. The micellar nanocomplex is obtained by complexation of oligomerized EGCG with the anticancer protein Herceptin to form the core, followed by complexation of poly(ethylene glycol)-EGCG to form the shell. When injected into mice, the Herceptin-loaded micellar nanocomplex demonstrates better tumour selectivity and growth reduction, as well as longer blood half-life, than free Herceptin.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Catequina/análogos & derivados , Portadores de Fármacos/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Catequina/química , Catequina/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Camundongos , Camundongos Nus , Micelas , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA