Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Neurol ; 327: 113243, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057797

RESUMO

Mitochondrial dysfunction is a pivotal event in many neurodegenerative disease states including traumatic brain injury (TBI) and spinal cord injury (SCI). One possible mechanism driving mitochondrial dysfunction is glutamate excitotoxicity leading to Ca2+-overload in neuronal or glial mitochondria. Therapies that reduce calcium overload and enhance bioenergetics have been shown to improve neurological outcomes. Pioglitazone, an FDA approved compound, has shown neuroprotective properties following TBI and SCI, but the underlying mechanism(s) are unknown. We hypothesized that the interaction between pioglitazone and a novel mitochondrial protein called mitoNEET was the basis for neuroprotection following CNS injury. We discovered that mitoNEET is an important mediator of Ca2+-mediated mitochondrial dysfunction and show that binding mitoNEET with pioglitazone can prevent Ca2+-induced dysfunction. By utilizing wild-type (WT) and mitoNEET null mice, we show that pioglitazone mitigates mitochondrial dysfunction and provides neuroprotection in WT mice, though produces no restorative effects in mitoNEET null mice. We also show that NL-1, a novel mitoNEET ligand, is neuroprotective following TBI in both mice and rats. These results support the crucial role of mitoNEET for mitochondrial bioenergetics, its importance in the neuropathological sequelae of TBI and the necessity of mitoNEET for pioglitazone-mediated neuroprotection. Since mitochondrial dysfunction is a pathobiological complication seen in other diseases such as diabetes, motor neuron disease and cancer, targeting mitoNEET may provide a novel mitoceutical target and therapeutic intervention for diseases that expand beyond TBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Pioglitazona/uso terapêutico , Animais , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Proteínas de Ligação ao Ferro/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pioglitazona/farmacologia , Ratos , Ratos Sprague-Dawley
2.
Neurobiol Aging ; 36(5): 1903-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25726361

RESUMO

Altered mitochondrial function in the basal ganglia has been hypothesized to underlie cellular senescence and promote age-related motor decline. We tested this hypothesis in a nonhuman primate model of human aging. Six young (6-8 years old) and 6 aged (20-25 years old) female Rhesus monkeys (Macaca mulatta) were behaviorally characterized from standardized video records. Additionally, we measured mitochondrial bioenergetics along with calcium buffering capacity in the substantia nigra and putamen (PUT) from both age groups. Our results demonstrate that the aged animals had significantly reduced locomotor activity and movement speed compared with younger animals. Moreover, aged monkeys had significantly reduced ATP synthesis capacity (in substantia nigra and PUT), reduced pyruvate dehydrogenase activity (in PUT), and reduced calcium buffering capacity (in PUT) compared with younger animals. Furthermore, this age-related decline in mitochondrial function in the basal ganglia correlated with decline in motor function. Overall, our results suggest that drug therapies designed to enhance altered mitochondrial function may help improve motor deficits in the elderly.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Gânglios da Base/metabolismo , Gânglios da Base/ultraestrutura , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Transtornos Motores/metabolismo , Transtornos Motores/fisiopatologia , Trifosfato de Adenosina/biossíntese , Animais , Modelos Animais de Doenças , Feminino , Macaca mulatta , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Atividade Motora , Transtornos Motores/etiologia , Movimento , Doenças Neurodegenerativas , Complexo Piruvato Desidrogenase/metabolismo
3.
Exp Neurol ; 257: 95-105, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24805071

RESUMO

Mitochondrial dysfunction is becoming a pivotal target for neuroprotective strategies following contusion spinal cord injury (SCI) and the pharmacological compounds that maintain mitochondrial function confer neuroprotection and improve long-term hindlimb function after injury. In the current study we evaluated the efficacy of cell-permeating thiol, N-acetylcysteine amide (NACA), a precursor of endogenous antioxidant glutathione (GSH), on mitochondrial function acutely, and long-term tissue sparing and hindlimb locomotor recovery following upper lumbar contusion SCI. Some designated injured adult female Sprague-Dawley rats (n=120) received either vehicle or NACA (75, 150, 300 or 600mg/kg) at 15min and 6h post-injury. After 24h the total, synaptic, and non-synaptic mitochondrial populations were isolated from a single 1.5cm spinal cord segment (centered at injury site) and assessed for mitochondrial bioenergetics. Results showed compromised total mitochondrial bioenergetics following acute SCI that was significantly improved with NACA treatment in a dose-dependent manner, with maximum effects at 300mg/kg (n=4/group). For synaptic and non-synaptic mitochondria, only 300mg/kg NACA dosage showed efficacy. Similar dosage (300mg/kg) also maintained mitochondrial GSH near normal levels. Other designated injured rats (n=21) received continuous NACA (150 or 300mg/kg/day) treatment starting at 15min post-injury for one week to assess long-term functional recovery over 6weeks post-injury. Locomotor testing and novel gait analyses showed significantly improved hindlimb function with NACA that were associated with increased tissue sparing at the injury site. Overall, NACA treatment significantly maintained acute mitochondrial bioenergetics and normalized GSH levels following SCI, and prolonged delivery resulted in significant tissue sparing and improved recovery of hindlimb function.


Assuntos
Acetilcisteína/análogos & derivados , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Acetilcisteína/uso terapêutico , Animais , Modelos Animais de Doenças , Método Duplo-Cego , Sistemas de Liberação de Medicamentos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Coxeadura Animal/tratamento farmacológico , Coxeadura Animal/etiologia , Mitocôndrias/enzimologia , Atividade Motora/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/complicações , Sinapses/efeitos dos fármacos , Sinapses/enzimologia , Sinapses/patologia , Sinapses/ultraestrutura , Fatores de Tempo
4.
Exp Neurol ; 257: 106-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792639

RESUMO

Traumatic brain injury (TBI) has become a growing epidemic but no approved pharmacological treatment has been identified. Our previous work indicates that mitochondrial oxidative stress/damage and loss of bioenergetics play a pivotal role in neuronal cell death and behavioral outcome following experimental TBI. One tactic that has had some experimental success is to target glutathione using its precursor N-acetylcysteine (NAC). However, this approach has been hindered by the low CNS bioavailability of NAC. The current study evaluated a novel, cell permeant amide form of N-acetylcysteine (NACA), which has high permeability through cellular and mitochondrial membranes resulting in increased CNS bioavailability. Cortical tissue sparing, cognitive function and oxidative stress markers were assessed in rats treated with NACA, NAC, or vehicle following a TBI. At 15days post-injury, animals treated with NACA demonstrated significant improvements in cognitive function and cortical tissue sparing compared to NAC or vehicle treated animals. NACA treatment also was shown to reduce oxidative damage (HNE levels) at 7days post-injury. Mechanistically, post-injury NACA administration was demonstrated to maintain levels of mitochondrial glutathione and mitochondrial bioenergetics comparable to sham animals. Collectively these data provide a basic platform to consider NACA as a novel therapeutic agent for treatment of TBI.


Assuntos
Acetilcisteína/análogos & derivados , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Acetilcisteína/uso terapêutico , Aldeídos/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Modelos Animais de Doenças , Método Duplo-Cego , Glutationa/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA