RESUMO
While boron neutron capture therapy (BNCT) depends primarily on the short flight range of the alpha particles emitted by the boron neutron capture reaction, gadolinium neutron capture therapy (GdNCT) mainly relies on gamma rays and Auger electrons released by the gadolinium neutron capture reaction. BNCT and GdNCT can be complementary in tumor therapy. Here, we studied the combined effects of BNCT and GdNCT when boron and gadolinium compounds were co-injected, followed by thermal neutron irradiation, and compared these effects with those of the single therapies. In cytotoxicity studies, some additive effects (32â43%) were observed when CT26 cells were treated with both boron- and gadolinium-encapsulated PEGylated liposomes (B- and Gd-liposomes) compared to the single treatments. The tumor-suppressive effect was greater when BNCT was followed by GdNCT at an interval of 10 days rather than vice versa. However, tumor suppression with co-injection of B- and Gd-liposomes into tumor-bearing mice followed by neutron beam irradiation was comparable to that observed with Gd-liposome-only treatment but lower than B-liposome-only injection. No additive effect was observed with the combination of BNCT and GdNCT, which could be due to the shielding effect of gadolinium against thermal neutrons because of its overwhelmingly large thermal neutron cross section.
Assuntos
Neoplasias , Terapia por Captura de Nêutron , Animais , Boro , Compostos de Boro , Modelos Animais de Doenças , Gadolínio , Lipossomos , CamundongosRESUMO
Immuno-positron emission tomography (immuno-PET) is a rapidly growing imaging technique in which antibodies are radiolabeled to monitor their in vivo behavior in real time. However, effecting the controlled conjugation of a chelate-bearing radioactive atom to a bulky antibody without affecting its immunoreactivity at a specific site is always challenging. The in vivo stability of the radiolabeled chelate is also a key issue for successful tumor imaging. To address these points, a facile ultra-stable radiolabeling platform is developed by using the propylene cross-bridged chelator (PCB-TE2A-alkyne), which can be instantly functionalized with various groups via the click reaction, thus enabling specific conjugation with antibodies as per choice. The PCB-TE2A-tetrazine derivative is selected to demonstrate the proposed strategy. The antibody trastuzumab is functionalized with the trans-cyclooctene (TCO) moiety in the presence or absence of the PEG linker. The complementary 64Cu-PCB-TE2A-tetrazine is synthesized via the click reaction and radiolabeled with 64Cu ions, which then reacts with the aforementioned TCO-modified antibody via a rapid biorthogonal ligation. The 64Cu-PCB-TE2A-trastuzumab conjugate is shown to exhibit excellent in vivo stability and to maintain a higher binding affinity toward HER2-positive cells. The tumor targeting feasibility of the radiolabeled antibody is evaluated in tumor models. Both 64Cu-PCB-TE2A-trastuzumab conjugates show high tumor uptakes in biodistribution studies and enable unambiguous tumor visualization with minimum background noise in PET imaging. Interestingly, the 64Cu-PCB-TE2A-PEG4-trastuzumab containing an additional PEG linker displays a much faster body clearance compared to its counterpart with less PEG linker, thus affording vivid tumor imaging with an unprecedentedly high tumor-to-background ratio.
Assuntos
Anticorpos/química , Materiais Biocompatíveis/química , Complexos de Coordenação/química , Cobre/química , Tomografia por Emissão de Pósitrons , Animais , Anticorpos/metabolismo , Materiais Biocompatíveis/metabolismo , Química Click , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Radioisótopos de Cobre , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Tamanho da PartículaRESUMO
A challenge in using plasmonic nanostructure-drug conjugates for thermo-chemo combination cancer therapy lies in the huge size discrepancy; the size difference can critically differentiate their biodistributions and hamper the synergistic effect. Properly tuning the plasmonic wavelength for photothermal therapy typically results in the nanostructure size reaching â¼100 nm. We report a new combination cancer therapy platform that consists of relatively small 10 nm pH-responsive spherical gold nanoparticles and conjugated doxorubicins. They are designed to form aggregates in mild acidic environment such as in a tumor. The aggregates serve as a photothermal agent that can selectively exploit external light by their collective plasmon modes. Simultaneously, the conjugated doxorubicins are released. The spatiotemporal concertion is confirmed at the subcellular, cellular, and organ levels. Both agents colocalize in the cell nuclei. The conjugates accumulate in cancer cells by the rapid phagocytic actions and effective blockage of exocytosis by the increased aggregate size. They also effectively accumulate in tumors up to 17 times over the control because of the enhanced permeation and retention. The conjugates exhibit a synergistic effect enhanced by nearly an order of magnitude in cellular level. The synergistic effect is demonstrated by the remarkable reductions in both the therapeutically effective drug dosage and the photothermal laser threshold. Using an animal model, effective tumor growth suppression is demonstrated. The conjugates induce apoptosis to tumors without any noticeable damage to other organs. The synergistic effect in vivo is confirmed by qRT-PCR analysis over the thermal stress and drug-induced growth arrest.
Assuntos
Preparações de Ação Retardada/administração & dosagem , Doxorrubicina/administração & dosagem , Ouro/uso terapêutico , Hipertermia Induzida/métodos , Nanocápsulas/administração & dosagem , Neoplasias Experimentais/terapia , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Terapia Combinada , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Nanocápsulas/química , Neoplasias Experimentais/patologia , Ressonância de Plasmônio de Superfície/métodos , Resultado do TratamentoRESUMO
The need for beneficial use of sedatives in oncologic patients is increasing. Therefore, in this study, antiproliferative characteristics of herbal and synthetic sedatives were examined in vitro in SNU-C4 human colorectal adenocarcinoma cells. Apigenin (50% inhibition concentration, IC(50) = 1.8 +/- 0.5 microM) and diazepam (IC(50) = 7.0 +/- 0.5 microM) showed concentration-dependent inhibition of SNU-C4 cancer cell survival. Efficacy of cancer cell survival inhibition by apigenin and diazepam was much lower than that of 5-fluorouracil (5-FU), a known chemotherapeutic drug. However, 10(-6) M concentration of apigenin and diazepam potentiated 5-FU-induced cytotoxicity. In SNU-C4 cells, 10(-6) M concentrations of diazepam, flumazenil (Ro15-1788), Ro5-4864, or PK11195, all ligands for central- or peripheral-type benzodiazepine (BZD) receptors, inhibited cell survival like the flavonoid apigenin (4',5,7-trihydroxyflavone) and fisetin (3,7,3',4'-tetrahydroxyflavone). Also like the plant flavonoids, treatment with 10(-6) M concentration of diazepam for 3 days hardly affect the peripheral-type BZD receptor (PBR) messenger RNA (mRNA) expression and inhibited glucose utilization of SNU-C4 cells. Treatment with flavonoids or diazepam for 6 days upregulated PBR mRNA expression and cell cytotoxicity of SNU-C4 cells. Furthermore, treatment with 10(-6) M concentration of apigenin, a natural sedative material originating from traditional herbs, positively modulated BZD-induced antiproliferative cytotoxicity in SNU-C4 cells. Overall, the in vitro antiproliferative activity on SNU-C4 cancer cells of herbal sedatives, such as apigenin, plus additive enhancement of synthetic BZD- and 5-FU-induced antiproliferative activities, were shown. In conclusion, this study provides experimental basis for advanced trial in the future.
Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Hipnóticos e Sedativos/farmacologia , Adenocarcinoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apigenina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Diazepam/administração & dosagem , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Flavonoides/administração & dosagem , Flavonóis , Fluoruracila/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hipnóticos e Sedativos/administração & dosagem , Concentração Inibidora 50 , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismoRESUMO
86Y is an attractive PET radionuclide due to its intermediate half-life. (86)Y was produced via the 86Sr(p,n)86Y nuclear reaction. Enriched SrCO3 or SrO was irradiated with 2-6 microA of beam current for <4 h on a CS-15 cyclotron. It was shown that the SrO target could withstand at least 6 microA of beam current, a significant improvement over a maximum of 2 microA on the SrCO3 target. Average yields of 4.5 mCi/microA.h were achieved with SrO, which represent 71% of the theoretical yield, compared to 2.3 mCi/microA.h with SrCO3. The radioisotopic contaminants were (86m)Y (220%), 87Y (0.27%), (87m)Y (0.43%) and 88Y (0.024%). 86Y was isolated in an electrochemical cell consisting of three Pt electrodes. The solution was electrolyzed at 2000 mA (40 min) using two Pt plate electrodes. A second electrolysis (230 mA for 20 min) was performed using one Pt plate and a Pt wire. On average, 97.1% of the 86Y was recollected on the Pt wire after a second electrolysis. The (86)Y was collected from the Pt wire using 2.8 M HNO3/EtOH (3:1). After evaporation, 86Y was reconstituted in 100 microl of 0.1 M HCl. Target materials were recovered as SrCO3 and then converted to SrO by thermal decomposition at 1150 degrees C. Specific activity of 86Y was determined to be 29+/-19 mCi/microg via titration of 86Y(OAc)3 with DOTA or DTPA. We have established techniques for the routine, economical production of high purity, high specific activity 86Y on a small biomedical cyclotron that are translatable to other institutions.