Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 209: 115306, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38626859

RESUMO

Cancer immunotherapy represents a revolutionary strategy, leveraging the patient's immune system to inhibit tumor growth and alleviate the immunosuppressive effects of the tumor microenvironment (TME). The recent emergence of immune checkpoint blockade (ICB) therapies, particularly following the first approval of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors like ipilimumab, has led to significant growth in cancer immunotherapy. The extensive explorations on diverse immune checkpoint antibodies have broadened the therapeutic scope for various malignancies. However, the clinical response to these antibody-based ICB therapies remains limited, with less than 15% responsiveness and notable adverse effects in some patients. This review introduces the emerging strategies to overcome current limitations of antibody-based ICB therapies, mainly focusing on the development of small interfering ribonucleic acid (siRNA)-based ICB therapies and innovative delivery systems. We firstly highlight the diverse target immune checkpoint genes for siRNA-based ICB therapies, incorporating silencing of multiple genes to boost anti-tumor immune responses. Subsequently, we discuss improvements in siRNA delivery systems, enhanced by various nanocarriers, aimed at overcoming siRNA's clinical challenges such as vulnerability to enzymatic degradation, inadequate pharmacokinetics, and possible unintended target interactions. Additionally, the review presents various combination therapies that integrate chemotherapy, phototherapy, stimulatory checkpoints, ICB antibodies, and cancer vaccines. The important point is that when used in combination with siRNA-based ICB therapy, the synergistic effect of traditional therapies is strengthened, improving host immune surveillance and therapeutic outcomes. Conclusively, we discuss the insights into innovative and effective cancer immunotherapeutic strategies based on RNA interference (RNAi) technology utilizing siRNA and nanocarriers as a novel approach in ICB cancer immunotherapy.


Assuntos
Inativação Gênica , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias , RNA Interferente Pequeno , Humanos , RNA Interferente Pequeno/administração & dosagem , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/administração & dosagem , Animais , Microambiente Tumoral/imunologia
2.
Sci Rep ; 11(1): 19388, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588578

RESUMO

The gold nanorods (GNRs) embedded alginate-chitosan (scaffold), which was designed and fabricated to produce efficient handling of the cell proliferations. Scaffold embedded GNR (SGNR) and NIR (near infrared) irradiations are developing into an interesting medical prognosis tool for rabbit chondrocyte (RC) proliferation. SGNR contained a pattern of uniform pores. Biocompatibility and cellular proliferation achieved by disclosures to NIR irradiations, providing high cell survival. SGNR and NIR irradiations could produce mechanical and biochemical cues for regulating RCs proliferations. To determine the thermal stress, it exposed RCs to 39-42 °C for 0-240 min at the start point of the cell culture cycle. It produced photothermal stress in cellular surrounding (cells located adjacent to and within scaffold) and it deals with the proliferation behavior of RC. All the processes were modeled with experimental criteria and time evolution process. Our system could help the cell proliferation by generating heat for cells. Hence, the present strategy could be implemented for supporting cell therapeutics after transplantation. This implementation would open new design techniques for integrating the interfaces between NIR irradiated and non-irradiated tissues.


Assuntos
Condrócitos/citologia , Fototerapia/métodos , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Ouro/química , Nanotubos/química , Coelhos
3.
ACS Appl Mater Interfaces ; 12(30): 33483-33491, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32614594

RESUMO

The development of heat-generating magnetic nanostructures is critical for the effective management of tumors using magnetic hyperthermia. Herein, we demonstrate that polyethylene glycol (PEG)-coated iron oxide (magnetite, Fe3O4) multigranule nanoclusters (PEG-MGNCs) can enhance the efficiency of hyperthermia-based tumor suppression in vitro and in vivo. MGNCs consisting of granules (crystallites) measuring 22.9 nm in diameter were prepared via the hydrothermal polyol method, followed by the surface modification of MGNCs with PEG-dopamine. The freshly prepared PEG-MGNCs exhibit 145.9 ± 10.2 nm diameter on average under aqueous conditions. The three-dimensional structures of PEG-MGNCs enhance the hyperthermic efficacy compared with PEGylated single iron-oxide nanoparticles (NPs), resulting in severe heat damage to tumor cells in vitro. In the SCC7 tumor-bearing mice, near-infrared fluorescence dye (Cy5.5)-labeled PEG-MGNCs are successfully accumulated in the tumor tissues because of NP-derived enhanced permeation and retention effect. Finally, the tumor growth is significantly suppressed in PEG-MGNC-treated mice after two-times heat generation by using a longitudinal solenoid, which can generate an alternating magnetic field under high-frequency (19.5 kA/m, 389 kHz) induction. This study shows for the first time that the PEG-MGNCs greatly enhance the hyperthermic efficacy of tumor treatment both in vitro and in vivo.


Assuntos
Materiais Biocompatíveis/química , Compostos Férricos/química , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dopamina/química , Corantes Fluorescentes/química , Campos Magnéticos , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tamanho da Partícula , Polietilenoglicóis/química , Distribuição Tecidual , Transplante Homólogo
4.
Theranostics ; 7(1): 9-22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042312

RESUMO

Nucleic acid-directed self-assembly provides an attractive method to fabricate prerequisite nanoscale structures for a wide range of technological applications due to the remarkable programmability of DNA/RNA molecules. In this study, exquisite RNAi-AuNP nanoconstructs with various geometries were developed by utilizing anti-VEGF siRNA molecules as RNAi-based therapeutics in addition to their role as building blocks for programmed self-assembly. In particular, the anti-VEGF siRNA-functionalized AuNP nanoconstructs can take additional advantage of gold-nanoclusters for photothermal cancer therapeutic agent. A noticeable technical aspect of self-assembled RNAi-AuNP nanoconstructs in this study is the precise conjugation and separation of designated numbers of therapeutic siRNA onto AuNP to develop highly sophisticated RNA-based building blocks capable of creating various geometries of RNAi-AuNP nano-assemblies. The therapeutic potential of RNAi-AuNP nanoconstructs was validated in vivo as well as in vitro by combining heat generation capability of AuNP and anti-angiogenesis mechanism of siRNA. This strategy of combining anti-VEGF mechanism for depleting angiogenesis process at initial tumor progression and complete ablation of residual tumors with photothermal activity of AuNP at later tumor stage showed effective tumor growth inhibition and tumor ablation with PC-3 tumor bearing mice.


Assuntos
Antineoplásicos/uso terapêutico , Tratamento Farmacológico/métodos , Ouro/uso terapêutico , Hipertermia Induzida/métodos , Nanoestruturas/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ouro/metabolismo , Xenoenxertos , Masculino , Camundongos , Neovascularização Patológica , Neoplasias da Próstata/terapia , RNA Interferente Pequeno/metabolismo , Resultado do Tratamento
5.
Bioconjug Chem ; 28(1): 124-134, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27788580

RESUMO

Recently, nanotechnology has provided significant advances in biomedical applications including diagnosis and therapy. In particular, nanoparticles have emerged as valuable outcomes of nanotechnology due to their unique physicochemical properties based on size, shape, and surface properties. Among them, a large amount of research has reported imaging and therapeutic applications using inorganic nanoparticles with special properties. Inorganic nanoparticles developed for imaging and therapy contain metal (Au), metal oxide (Fe3O4, WO3, WO2.9), semiconductor nanocrystal (quantum dots (QDs)), and lanthanide-doped upconversion nanoparticles (UCNPs). Based on their intrinsic properties, they can generate heat, reactive oxygen species (ROS), or energy transfer, so that they can be used for both imaging and therapy. In this review, we introduce biocompatible inorganic nanoparticles for image-guided thermal and photodynamic therapy, and discuss their promising results from in vitro and in vivo studies for biomedical applications.


Assuntos
Compostos Inorgânicos/química , Nanopartículas/química , Humanos , Hipertermia Induzida , Imageamento por Ressonância Magnética , Pontos Quânticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA