Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321812

RESUMO

Rabies virus (RABV) causes a severe and fatal neurological disease, but morbidity is vaccine preventable and treatable prior to the onset of clinical symptoms. However, immunoglobulin (IgG)-based rabies postexposure prophylaxis (PEP) is expensive, restricting access to life-saving treatment, especially for patients in low-income countries where the clinical need is greatest, and does not confer cross-protection against newly emerging phylogroup II lyssaviruses. Toward identifying a cost-effective replacement for the IgG component of rabies PEP, we developed and implemented a high-throughput screening protocol utilizing a single-cycle RABV reporter strain. A large-scale screen and subsequent direct and orthogonal counterscreens identified a first-in-class direct-acting RABV inhibitor, GRP-60367, with a specificity index (SI) of >100,000. Mechanistic characterization through time-of-addition studies, transient cell-to-cell fusion assays, and chimeric vesicular stomatitis virus (VSV) recombinants expressing the RABV glycoprotein (G) demonstrated that GRP-60367 inhibits entry of a subset of RABV strains. Resistance profiling of the chemotype revealed hot spots in conserved hydrophobic positions of the RABV G protein fusion loop that were confirmed in transient cell-to-cell fusion assays. Transfer of RABV G genes with signature resistance mutations into a recombinant VSV backbone resulted in the recovery of replication-competent virions with low susceptibility to the inhibitor. This work outlines a tangible strategy for mechanistic characterization and resistance profiling of RABV drug candidates and identified a novel, well-behaved molecular probe chemotype that specifically targets the RABV G protein and prevents G-mediated viral entry.IMPORTANCE Rabies PEP depends on anti-RABV IgG, which is expensive and in limited supply in geographical areas with the highest disease burden. Replacing the IgG component with a cost-effective and shelf-stable small-molecule antiviral could address this unmet clinical need by expanding access to life-saving medication. This study has established a robust protocol for high-throughput anti-RABV drug screens and identified a chemically well-behaved, first-in-class hit with nanomolar anti-RABV potency that blocks RABV G protein-mediated viral entry. Resistance mapping revealed a druggable site formed by the G protein fusion loops that has not previously emerged as a target for neutralizing antibodies. Discovery of this RABV entry inhibitor establishes a new molecular probe to advance further mechanistic and structural characterization of RABV G that may aid in the design of a next-generation clinical candidate against RABV.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Vírus da Raiva/imunologia , Animais , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Linhagem Celular , Proteção Cruzada , Humanos , Biblioteca de Peptídeos , Raiva/prevenção & controle , Vacina Antirrábica/imunologia , Vírus da Raiva/metabolismo , Vírus da Raiva/patogenicidade , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Vesiculovirus/genética , Vesiculovirus/imunologia , Proteínas Virais de Fusão/farmacologia
2.
J Biomol Screen ; 13(7): 591-608, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18626114

RESUMO

Several members of the paramyxovirus family constitute major human pathogens that, collectively, are responsible for major morbidity and mortality worldwide. In an effort to develop novel therapeutics against measles virus (MV), a prominent member of the paramyxovirus family, the authors report a high-throughput screening protocol that uses a nonrecombinant primary MV strain as targets. Implementation of the assay has yielded 60 hit candidates from a 137,500-entry library. Counterscreening and generation of dose-response curves narrows this pool to 35 compounds with active concentrations < or =15.3 microM against the MV-Alaska strain and specificity indices ranging from 36 to >500. Library mining for structural analogs of several confirmed hits combined with retesting of identified candidates reveals a high accuracy of primary hit identification. Eleven of the confirmed hits interfere with viral entry, whereas the remaining 24 compounds target postentry steps of the viral life cycle. Activity testing against selected members of the paramyxovirus family reveals 3 patterns of activity: 1) exclusively MV-specific blockers, 2) inhibitors of MV and related viruses of the same genus, and 3) broader range inhibitors with activity against a different Paramyxovirinae genus. Representatives of the last class may open avenues for the development of broad-range paramyxovirus inhibitors through hit-to-lead chemistry.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Paramyxovirinae/metabolismo , Animais , Anti-Infecciosos/farmacologia , Automação , Chlorocebus aethiops , Cães , Desenho de Fármacos , Humanos , Modelos Químicos , RNA Viral/metabolismo , Software , Transfecção , Células Vero
3.
J Med Chem ; 51(13): 3731-41, 2008 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-18529043

RESUMO

Measles virus (MV) is one of the most infectious pathogens known. In spite of the existence of a vaccine, approximately 350000 deaths/year result from MV or associated complications. Antimeasles compounds could conceivably diminish these statistics and provide a therapy that complements vaccine treatment. We recently described a high-throughput screening hit compound 1 (16677) against MV-infected cells with the capacity to eliminate viral reproduction at 250 nM by inhibiting the action of the virus's RNA-dependent RNA polymerase complex (RdRp). The compound, 1-methyl-3-(trifluoromethyl)- N-[4-sulfonylphenyl]-1 H-pyrazole-5-carboxamide, 1 carries a critical CF 3 moiety on the 1,2-pyrazole ring. Elaborating on the preliminary structure-activity (SAR) study, the present work presents the synthesis and SAR of a much broader range of low nanomolar nonpeptidic MV inhibitors and speculates on the role of the CF 3 functionality.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Vírus do Sarampo/efeitos dos fármacos , Vírus do Sarampo/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Ligantes , Modelos Moleculares , Estrutura Molecular , Nucleosídeos/química , Nucleosídeos/farmacologia , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia , Ligação Proteica , Pirazóis/química , Relação Quantitativa Estrutura-Atividade , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Internalização do Vírus/efeitos dos fármacos
4.
Bioorg Med Chem Lett ; 17(18): 5199-203, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17643302

RESUMO

High-throughput screening has identified 1-methyl-3-(trifluoromethyl)-N-[4-(pyrrolidinylsulfonyl)phenyl]-1H-pyrazole-5-carboxamide 16677 as a novel and potent (IC(50)=35-145 nM) inhibitor against multiple primary isolates of diverse measles virus (MV) genotypes currently circulating worldwide. The synthesis of 16677 and several analogs together with effects on MV replication is described. The most potent analog displays nanomolar inhibition against the MV and a selectivity ratio (CC(50)/IC(50)) of ca. 16,500.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Vírus do Sarampo/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Técnicas In Vitro , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA