Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(29): e2214320120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428918

RESUMO

Integrating antigen-encoding mRNA (Messenger RNA) and immunostimulatory adjuvant into a single formulation is a promising approach to potentiating the efficacy of mRNA vaccines. Here, we developed a scheme based on RNA engineering to integrate adjuvancy directly into antigen-encoding mRNA strands without hampering the ability to express antigen proteins. Short double-stranded RNA (dsRNA) was designed to target retinoic acid-inducible gene-I (RIG-I), an innate immune receptor, for effective cancer vaccination and then tethered onto the mRNA strand via hybridization. Tuning the dsRNA structure and microenvironment by changing its length and sequence enabled the determination of the structure of dsRNA-tethered mRNA efficiently stimulating RIG-I. Eventually, the formulation loaded with dsRNA-tethered mRNA of the optimal structure effectively activated mouse and human dendritic cells and drove them to secrete a broad spectrum of proinflammatory cytokines without increasing the secretion of anti-inflammatory cytokines. Notably, the immunostimulating intensity was tunable by modulating the number of dsRNA along the mRNA strand, which prevents excessive immunostimulation. Versatility in the applicable formulation is a practical advantage of the dsRNA-tethered mRNA. Its formulation with three existing systems, i.e., anionic lipoplex, ionizable lipid-based lipid nanoparticles, and polyplex micelles, induced appreciable cellular immunity in the mice model. Of particular interest, dsRNA-tethered mRNA encoding ovalbumin (OVA) formulated in anionic lipoplex used in clinical trials exerted a significant therapeutic effect in the mouse lymphoma (E.G7-OVA) model. In conclusion, the system developed here provides a simple and robust platform to supply the desired intensity of immunostimulation in various formulations of mRNA cancer vaccines.


Assuntos
Neoplasias , RNA de Cadeia Dupla , Humanos , Animais , Camundongos , RNA de Cadeia Dupla/genética , Adjuvantes Imunológicos/farmacologia , Antígenos , Imunidade Celular , Citocinas/genética , RNA Mensageiro/genética , Camundongos Endogâmicos C57BL , Neoplasias/terapia
2.
Biomaterials ; 150: 162-170, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29031816

RESUMO

Messenger (m)RNA vaccines require a safe and potent immunostimulatory adjuvant. In this study, we introduced immunostimulatory properties directly into mRNA molecules by hybridizing them with complementary RNA to create highly immunogenic double stranded (ds)RNAs. These dsRNA formulations, comprised entirely of RNA, are expected to be safe and highly efficient due to antigen expression and immunostimulation occurring simultaneously in the same antigen presenting cells. In this strategy, design of dsRNA is important. Indeed, hybridization using full-length antisense (as)RNA drastically reduced translational efficiency. In contrast, by limiting the hybridized portion to the mRNA poly A region, efficient translation and intense immunostimulation was simultaneously obtained. The immune response to the poly U-hybridized mRNAs (mRNA:pU) was mediated through Toll-like receptor (TLR)-3 and retinoic acid-inducible gene (RIG)-I. We also demonstrated that mRNA:pU activation of mouse and human dendritic cells was significantly more effective than activation using single stranded mRNA. In vivo mouse immunization experiments using ovalbumin showed that mRNA:pU significantly enhanced the intensity of specific cellular and humoral immune responses, compared to single stranded mRNA. Our novel mRNA:pU formulation can be delivered using a variety of mRNA carriers depending on the purpose and delivery route, providing a versatile platform for improving mRNA vaccine efficiency.


Assuntos
Imunização/métodos , Poli A/química , Biossíntese de Proteínas/genética , RNA de Cadeia Dupla/química , RNA Mensageiro/química , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Hibridização de Ácido Nucleico/genética , Oligorribonucleotídeos Antissenso/química , Oligorribonucleotídeos Antissenso/genética , Poli A/genética , Poli U/química , Poli U/genética , Cultura Primária de Células , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Vacinas de DNA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA