Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Sci ; 12(3): 808-809, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38240308

RESUMO

Correction for 'An E-selectin targeting and MMP-2-responsive dextran-curcumin polymeric prodrug for targeted therapy of acute kidney injury' by Jing-Bo Hu et al., Biomater. Sci., 2018, 6, 3397-3409, https://doi.org/10.1039/C8BM00813B.

2.
J Control Release ; 365: 1058-1073, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056695

RESUMO

As an efficient, non-invasive, low-side-effect, and highly selective cancer therapy, photodynamic therapy (PDT) is used to treat various malignant tumors. However, the inefficiency of dealing with deep tumors and metastatic lesions highly limits the use of PDT. Immunogenic cell death (ICD) is a particular form of tumor cell death that could elicit a tumor-special immune response, leading to a systemic anti-tumor effect and providing therapeutic benefits for metastatic lesions. In this regard, it is crucial to enhance the ability of PDT to induce ICD. Luckily, advanced nanotechnology created many promising ways to improve the immunogenicity of PDT and achieve photoimmunotherapy. This review summarizes the emerging strategies for triggering immunogenic cell death via nanoplatform-enhanced PDT, with particular emphasis on their advantages in photoimmunotherapy. We highlight the nanoplatforms classified according to the basic principles of photodynamic therapy and immunogenic cell death, which provides a valuable reference for the design of nanoplatform for photoimmunotherapy. In addition, we also discuss the current situation and prospect of nano-based photoimmunotherapy in clinical studies.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Morte Celular Imunogênica , Fototerapia , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia
3.
Small ; : e2207694, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154216

RESUMO

Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.

4.
Cancer Gene Ther ; 30(5): 683-693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36575317

RESUMO

Glioma is a primary brain tumor with limited treatment approaches and glioblastoma stem cells (GSCs) are manifested with the self-renewal capability and high tumorigenic capacity. This study was performed to investigate the regulatory effect of the SUMO-specific protease 1 (SENP1)/methyltransferase-like 3 (METTL3)/MYC axis on the self-renewal of GSCs mediated by transcription factor Yin Yang 1 (YY1). Following bioinformatics analysis and clinical and cellular experiments, we found that YY1 was highly expressed in GBM tissues and cells, while silencing its expression reduced the self-renewal ability of GSCs. Functionally, YY1 promoted the transcriptional expression of SENP1 by binding to the promoter region of SENP1, while the deSUMOase SENP1 facilitated the methylase activity of m6A through deSUMOylation of the methylase METTL3, thereby promoting the m6A modification of MYC mRNA via METL3 and promoting the expression of MYC. A nude mouse xenograft model of GBM was also constructed to examine the tumorigenicity of GSCs. The obtained findings demonstrated that YY1 promoted tumorigenicity of GSCs by promoting the expression of MYC in vivo. Conclusively, YY1 can transcriptionally upregulate the SUMOylase SENP1 and enhance the methylase activity of METTL3, resulting in the increased m6A modification level of MYC mRNA, thereby promoting the self-renewal of GSCs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/patologia , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Peptídeo Hidrolases/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/metabolismo , Neoplasias Encefálicas/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Metiltransferases/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
5.
Phytomedicine ; 107: 154446, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36182799

RESUMO

BACKGROUND: Brucea javanica oil (BJO) is the active substance extracted from the dry and mature fruit of Brucea javanica. Its pharmaceutical preparation, BJO emulsion (BJOE), is one of the most widely studied traditional Chinese medicine preparations for the treatment of malignancy. However, the unrevealed anti-tumor mechanism immensely limits further development of BJOE. PURPOSE: In this study, we delved into the anti-tumor mechanism of commercial BJOE, including its influence on the tumor microenvironment (TME) and the treatment effect when combined with anti-programmed cell death protein-1 (PD-1) therapy. METHODS: The cytotoxicity of BJOE was tested in different cells in vitro, and a Förster resonance energy transfer system was also constructed to predict the release behavior of BJOE in vivo. Then, a B16 melanoma mouse model was used to explore the combination of BJOE and anti-mouse PD-1 antibody therapy. In addition, mass cytometry was used to test the impact of both drugs on the TME. RESULTS: Out data revealed that BJOE did not directly kill tumor cells in vitro. However, BJOE was mainly released at the tumor site, converting an immunosuppressive TME into an immune-activated state, and its combination with anti-PD-1 therapy significantly inhibited the growth of melanoma and prolonged the survival time of the mice due to an increase in cytotoxic T lymph (CD8+ T) and helper/inducible T lymph (CD4+ T) cells in lymph nodes and tumors. CONCLUSIONS: Our work explored the anti-tumor mechanism of commercial BJOE and the regulation of cytokines by BJOE when it was combined with anti-PD-1 therapy in vivo. The combination of these therapies could increase the numbers of CD4+ T-cells, CD8+ T-cells, and effective natural killer cells and the ratio of MI/M2 macrophages in tumor tissues, promoting inflammatory activity and enhancing the anti-tumor effect. This study provides a theoretical basis for advancing the modern development of traditional Chinese medicine preparations and stands as a reference for clinically improving the efficacy of PD-1 antibodies.


Assuntos
Brucea , Animais , Brucea/química , Brucea javanica , Linfócitos T CD8-Positivos/metabolismo , Morte Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Emulsões/farmacologia , Fatores Imunológicos , Imunoterapia , Camundongos , Óleos de Plantas/farmacologia
6.
ACS Nano ; 16(8): 12964-12978, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35968927

RESUMO

The tumor microenvironment (TME) is characterized by several immunosuppressive factors, of which weak acidity and l-arginine (l-arg) deficiency are two common features. A weak acidic environment threatens the survival of immune cells, and insufficient l-arg will severely restrain the effect of antitumor immune responses, both of which affect the efficiency of cancer treatments (especially immunotherapy). Meanwhile, l-arg is essential for tumor progression. Thus, two strategies, l-arg supplementation and l-arg deprivation, are developed for cancer treatment. However, these strategies have the potential risk of promoting tumor growth and impairing immune responses, which might lead to a paradoxical therapeutic effect. It is optimal to limit the l-arg availability of tumor cells from the microenvironment while supplying l-arg for immune cells. In this study, we designed a multivesicular liposome technology to continuously supply alkaline l-arg, which simultaneously changed the acidity and l-arg deficiency in the TME, and by selectively knocking down the CAT-2 transporter, l-arg starvation of tumors was maintained while tumor-killing immune cells were enriched in the TME. The results showed that our strategy promoted the infiltration and activation of CD8+ T cells in tumor, increased the proportion of M1 macrophages, inhibited melanoma growth, and prolonged survival. In combination with anti-PD-1 antibody, our strategy reversed the low tumor response to immune checkpoint blockade therapy, showing a synergistic antitumor effect. Our work provided a reference for improving the TME combined with regulating nutritional competitiveness to achieve the sensitization of immunotherapy.


Assuntos
Melanoma , Microambiente Tumoral , Humanos , Arginina/farmacologia , Imunoterapia/métodos , Fatores Imunológicos/farmacologia , Imunidade , Suplementos Nutricionais , Linhagem Celular Tumoral
7.
PLoS One ; 14(10): e0223763, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618238

RESUMO

We aimed to investigate the effects of genome, age, and soil factors on cultivated Panax ginseng C. A. Meyer (CPG) compounds under identical climate and agronomic practices. Eight populations of CPG from different years and rhizosphere soils were collected from garden and cropland in the city of Ji'an, China. Inter-simple sequence repeat (ISSR) primers were used to detect genetic diversity and identity, and soil microbial community diversity. Soil enzyme activities and nutrients were also measured. The contents of total ginsenosides (TG), Rg1, Re, Rf, Rd, and ginsenoside extractions of CPG were analyzed by spectrophotometry and HPLC. The relative importance of each factor was analyzed by mathematical methods such as correlation analysis, stepwise line regression, and path analysis. Regression equations of similarity values of HPLC fingerprint (SVHF), richness index of HPLC fingerprint (RIHF) and the TG, Rg1, Re, Rf, and Rd contents with their respective significant correlation factors were obtained. For SVHF, the relative importance is age>microbial community diversity>genetic diversity. For RIHF, the relative importance is age>genetic diversity>microbial community diversity. For TG, Rg1, and Rf contents, the relative importance is age>microbial community diversity. Ginseng age and genetic identity influenced Rd content, and age was more important. Total phosphorus was the only directly negative effect on Re. According to regression equations and path analysis, increasing age and decreasing Shannon (H') could improve the TG, Rg1, and Rf contents, with little effect on SVHF. Adding age, genetic diversity, and decreasing Shannon (H') increased RIHF. Adding age and genetic identity could also improve Rd content. Appropriate decreases in total phosphorus might increase Re content. These findings are significant for CPG scientific cultivation methods, through which CPG bioactive ingredients could be finely controlled via regulation of genotypes and cultural conditions.


Assuntos
Bactérias/isolamento & purificação , Ginsenosídeos/análise , Panax/crescimento & desenvolvimento , Fósforo/análise , Solo/química , Bactérias/classificação , Bactérias/genética , China , Cromatografia Líquida de Alta Pressão , DNA de Plantas/genética , Repetições de Microssatélites , Estrutura Molecular , Panax/química , Panax/genética , Raízes de Plantas/química , Rizosfera , Microbiologia do Solo
8.
Chin J Integr Med ; 25(11): 812-819, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471834

RESUMO

OBJECTIVE: To evaluate the association between Chinese medicine (CM) therapy and disease-free survival (DFS) outcomes in postoperative patients with non-small cell lung cancer (NSCLC). METHODS: This multiple-center prospective cohort study was conducted in 13 medical centers in China. Patients with stage I, II, or IIIA NSCLC who had undergone radical resection and received conventional postoperative treatment according to the National Comprehensive Cancer Network (NCCN) guidelines were recruited. The recruited patients were divided into a CM treatment group and a control group according to their wishes. Patients in the CM treatment group received continuous CM therapy for more than 6 months or until disease progression. Patients in the control group received CM therapy for less than 1 month. Follow-up was conducted over 3 years. The primary outcome was DFS, with recurrence/metastasis rates as a secondary outcome. RESULTS: Between May 2013 and August 2016, 503 patients were enrolled into the cohort; 266 were classified in the CM treatment group and 237 in the control group. Adjusting for covariates, high exposure to CM was associated with better DFS [hazard ratio (HR) = 0.417, 95% confidential interval (CI): 0.307-0.567)]. A longer duration of CM therapy (6-12 months, 12-18 months, >24 months) was associated with lower recurrence and metastasis rates (HR = 0.225, 0.119 and 0.083, respectively). In a subgroup exploratory analysis, CM therapy was also a protective factor of cancer recurrence and metastasis in both stage I-IIIA (HR=0.50, 95% CI: 0.37-0.67) and stage IIIA NSCLC postoperative patients (HR = 0.48, 95% CI: 0.33-0.71), DFS was even longer among CM treatment group patients. CONCLUSIONS: Longer duration of CM therapy could be considered a protective factor of cancer recurrence and metastasis. CM treatment is associated with improving survival outcomes of postoperative NSCLC patients in China. (Registration No. ChiCTR-OOC-14005398).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Medicina Tradicional Chinesa , Cuidados Pós-Operatórios/métodos , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , China/epidemiologia , Estudos de Coortes , Terapia Combinada/estatística & dados numéricos , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/cirurgia , Masculino , Medicina Tradicional Chinesa/métodos , Medicina Tradicional Chinesa/estatística & dados numéricos , Pessoa de Meia-Idade , Cuidados Pós-Operatórios/estatística & dados numéricos , Período Pós-Operatório , Resultado do Tratamento
9.
Nano Lett ; 19(8): 4949-4959, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31286769

RESUMO

Cationic anticancer peptides, which can induce tumor cell immunogenic death and further promote systemic tumor-specific immune responses, have offered a promising solution to relieve the tumor immunosuppressive microenvironment. However, peptide drugs are easily degraded and lack of targeting ability when administered systemically, leading to limitations in their applications. Herein, we report a pH and thermal dual-sensitive bovine lactoferricin-loaded (one of the most widely studied cationic anticancer peptides) nanoparticles, which simultaneously exhibited antitumor and immune cell activated effects when applied with microwave thermotherapy, an auxiliary method of immunotherapy. The bovine lactoferricin could be delivered to the tumor site by nanoparticles, be immediately released from nanoparticles in the acidic environment of lysosomes and the thermal condition caused by microwave radiation, and ultimately induce tumor apoptosis with the release of damage-associated molecular patterns (DAMPs). It is worth noting that the strategy of bovine lactoferricin-loaded nanoparticles intravenous injection combined with local microwave thermotherapy not only showed excellent efficacy in relieving tumor growth but also resulted in strong antitumor immunities, which was due to the released bovine lactoferricin under stimulating conditions, and the pool of tumor-associated antigens generated by tumor destruction. In conclusion, this work presents a strategy for tumor treatment based on dual-sensitive bovine lactoferricin-loaded nanoparticles combined with microwave thermotherapy, which may provide a solution for cationic anticancer peptides delivery and improving antitumor immune responses.


Assuntos
Antineoplásicos/uso terapêutico , Lactoferrina/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/terapia , Animais , Bovinos , Preparações de Ação Retardada/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Hipertermia Induzida , Imunoterapia , Camundongos , Micro-Ondas
10.
Nat Commun ; 10(1): 3349, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350406

RESUMO

Immunogenic cell death (ICD)-associated immunogenicity can be evoked through reactive oxygen species (ROS) produced via endoplasmic reticulum (ER) stress. In this study, we generate a double ER-targeting strategy to realize photodynamic therapy (PDT) photothermal therapy (PTT) immunotherapy. This nanosystem consists of ER-targeting pardaxin (FAL) peptides modified-, indocyanine green (ICG) conjugated- hollow gold nanospheres (FAL-ICG-HAuNS), together with an oxygen-delivering hemoglobin (Hb) liposome (FAL-Hb lipo), designed to reverse hypoxia. Compared with non-targeting nanosystems, the ER-targeting naosystem induces robust ER stress and calreticulin (CRT) exposure on the cell surface under near-infrared (NIR) light irradiation. CRT, a marker for ICD, acts as an 'eat me' signal to stimulate the antigen presenting function of dendritic cells. As a result, a series of immunological responses are activated, including CD8+ T cell proliferation and cytotoxic cytokine secretion. In conclusion, ER-targeting PDT-PTT promoted ICD-associated immunotherapy through direct ROS-based ER stress and exhibited enhanced anti-tumour efficacy.


Assuntos
Retículo Endoplasmático/metabolismo , Hipertermia Induzida , Neoplasias/terapia , Fotoquimioterapia , Animais , Linfócitos T CD8-Positivos/imunologia , Morte Celular , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Estresse do Retículo Endoplasmático , Ouro/química , Humanos , Raios Infravermelhos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanosferas/química , Neoplasias/imunologia , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Biomed Res Int ; 2019: 4805853, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31111056

RESUMO

N-acetylcysteine has been widely used as a nutritional supplement and drug in humans for its antioxidant properties. The complement activation fragment C5a is a strong proinflammatory molecule that mediates cell adhesion, chemotaxis, and the complex biological functions. However, the effect of NAC on the C5a, and the relationship of those two with cisplatin-induced acute kidney injury are unknown. In cisplatin induced AKI mouse model, mice with NAC administration had a marked improvement in renal function (BUN and Cr), decreased pathological damage, reduced inflammation, and alleviated renal oxidative stress. Furthermore, C5a and C5aR expression in the cisplatin-treated group was notably increased compared with the control group, and this increase could be significantly inhibited by NAC. In addition, neutrophils coexpressed distinctly with C5aR, and the number of infiltrating neutrophils (MPO+ly6G+) and inflammatory factors decreased with NAC treatment in the cisplatin-treated group. Overall, these data demonstrate that NAC could ameliorate cisplatin-induced nephrotoxicity in mice and the protective effects may be conducted by inhibiting the activation of kidney inflammation and the complement system.


Assuntos
Acetilcisteína/farmacologia , Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Complemento C5a/metabolismo , Modelos Animais de Doenças , Inflamação , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Estresse Oxidativo/efeitos dos fármacos , Receptor da Anafilatoxina C5a/metabolismo
12.
Mol Pharm ; 16(1): 71-85, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30431285

RESUMO

Acute lung injury (ALI) is a serious illness without resultful therapeutic methods commonly. Recent studies indicate the importance of oxidative stress in the occurrence and development of ALI, and mitochondria targeted antioxidant has become a difficult and hot topic in the research of ALI. Therefore, a sialic acid (SA)-modified lung-targeted microsphere (MS) for ALI therapy are developed, with triphenylphosphonium cation (TPP)-modified curcumin (Cur-TPP) loaded, which could specifically target the mitochondria, increasing the effect of antioxidant. The results manifest that with the increase of microsphere, lung distribution of microsphere is also increased in murine mice, and after SA modification, the microsphere exhibits the ideal lung-targeted characteristic in ALI model mice, due to SA efficiently targeting to E-selectin expressed on inflammatory tissues. Further investigations indicate that SA/Cur-TPP/MS has better antioxidative capacity, decreases intracellular ROS generation, and increases mitochondrial membrane potential, contributing to a lower apoptosis rate in human umbilical vein endothelial cells (HUVECs) compared to H2O2 group. In vivo efficacy of SA/Cur-TPP/MS demonstrates that the inflammation has been alleviated markedly and the oxidative stress is ameliorated efficiently. Significant histological improvements by SA/Cur-TPP/MS are further proved via HE stains. In conclusion, SA/Cur-TPP/MS might act as a promising drug formulation for ALI therapy.


Assuntos
Curcumina/química , Microesferas , Mitocôndrias/metabolismo , Ácido N-Acetilneuramínico/química , Poliésteres/química , Polietilenoglicóis/química , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Curcumina/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos
13.
Biomater Sci ; 6(12): 3397-3409, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30371703

RESUMO

Based on the overproduction of matrix metalloproteinase-2 (MMP-2) in renal tissue during acute kidney injury (AKI) occurrence, we developed a MMP-2 enzyme-triggered polymeric prodrug with sialic acid (SA) as the targeting group to the inflamed vascular endothelial cells for enhanced therapeutic outcomes. An MMP-2-responsive peptide, PVGLIG, was used to endow the polymeric prodrug with the ability to rapidly release the anti-inflammatory drug, curcumin (CUR), after the targeted site is reached and to improve the drug concentration in the target tissue. The sialic acid-dextran-PVGLIG-curcumin (SA-DEX-PVGLIG-CUR) polymeric prodrug was successfully synthesized via multi-step chemical reactions and characterized by 1H NMR. The water solubility of CUR was significantly increased in the polymeric prodrug and was approximately 23-fold higher than that of free CUR. The in vitro drug release results showed that the release rate of SA-DEX-PVGLIG-CUR was significantly enhanced compared to that of SA-DEX-CUR in a dissolving medium containing the MMP-2 enzyme, suggesting that SA-DEX-PVGLIG-CUR had rapid drug release characteristics in an inflammatory environment. A cellular uptake test confirmed that SA-DEX-PVGLIG-CUR was effectively internalized by inflamed vascular endothelial cells in comparison with that by normal cells, and the mechanism was associated with the specific interaction between SA and E-selectin receptors specifically expressed on inflamed vascular endothelial cells. Bio-distribution results further demonstrated the rapid and increased renal accumulation of SA-DEX-PVGLIG-CUR in AKI mice. Benefiting from the rapid drug release in renal tissue, SA-DEX-PVGLIG-CUR effectively ameliorated the pathological progression of AKI compared with free CUR and SA-DEX-CUR, as reflected by the improved renal functions, histopathological changes, pro-inflammatory cytokine production, oxidative stress and expression of apoptosis related proteins. Altogether, this study provided a new therapeutic strategy for the treatment of AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Curcumina/química , Dextranos/química , Selectina E/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Pró-Fármacos/química , Animais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular/métodos , Ácido N-Acetilneuramínico/química , Oligopeptídeos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
14.
ACS Nano ; 12(8): 7647-7662, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30020768

RESUMO

A convenient and feasible therapeutic strategy for malignant and metastatic tumors was constructed here by combining photothermal ablation (PTA)-based laser immunotherapy with perdurable PD-1 blockade immunotherapy. Hollow gold nanoshells (HAuNS, a photothermal agent) and AUNP12 (an anti PD-1 peptide, APP) were co-encapsulated into poly(lactic- co-glycolic) acid (PLGA) nanoparticles. Unlike monoclonal PD-1/PD-L1 antibodies, PD-1 peptide inhibitor shows lower cost and immunotoxicity but needs frequent administration due to its rapid clearance in vivo. Our data here showed that the formed HAuNS- and APP-loaded PLGA nanoparticles (AA@PN) could maintain release periods of up to 40 days for the peptide, and a single intratumoral injection of AA@PN could replace the frequent administration of free APP. After the administration of AA@PN and irradiation with a near-infrared laser at the tumor site, an excellent killing effect on the primary tumor cells was achieved by the PTA. The nanoparticles also played a vaccine-like role under the adjuvant of cytosine-phospho-guanine (CpG) oligodeoxynucleotide and generated a localized antitumor-immune response. Furthermore, sustained APP release with laser-dependent transient triggering could induce the blockage of PD-1/PD-L1 pathway to activate T cells, thus subsequently generating a systemic immune response. Our data demonstrated that the PTA combined with perdurable PD-1 blocking could efficiently eradicate the primary tumors and inhibit the growth of metastatic tumors as well as their formation. The present study provides a promising therapeutic strategy for the treatment of advanced cancer with metastasis and presents a valuable reference for obtaining better outcomes in clinical cancer immunotherapy.


Assuntos
Neoplasias da Mama/terapia , Imunoterapia , Lasers , Fototerapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Neoplasias da Mama/imunologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Receptor de Morte Celular Programada 1/imunologia , Propriedades de Superfície , Células Tumorais Cultivadas
15.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29914930

RESUMO

Rheumatoid arthritis (RA) is an inflammatory disease that has been linked to several risk factors, including periodontitis. Identification of new anti-inflammatory compounds to treat arthritis is needed. We had previously demonstrated the beneficial effect of Kava-241, a kavain-derived compound, in the management of Porphyromonas gingivalis-induced periodontitis. The present study evaluated systemic and articular effects of Kava-241 in an infective arthritis murine model triggered by P. gingivalis bacterial inoculation and primed with a collagen antibody cocktail (CIA) to induce joint inflammation and tissular destruction. Clinical inflammation score and radiological analyses of the paws were performed continuously, while histological assessment was obtained at sacrifice. Mice exposed to P. gingivalis and a CIA cocktail and treated concomitantly with Kava-241 exhibited a reduced clinical inflammatory score and a decreased number of inflammatory cells and osteoclasts within joint. Kava-241 treatment also decreased significantly tumor necrosis factor alpha (TNF-α) in serum from mice injected with a Toll-like receptor 2 or 4 (TLR-2/4) ligand, P. gingivalis-lipopolysaccharide (LPS). Finally, bone marrow-derived macrophages infected with P. gingivalis and exposed to Kava-241 displayed reduced TLR-2/4, reduced mitogen-activated protein kinase (MAPK)-related signal elements, and reduced LPS-induced TNF-α factor (LITAF), all explaining the observed reduction of TNF-α secretion. Taken together, these results emphasized the novel properties of Kava-241 in the management of inflammatory conditions, especially TNF-α-related diseases such as infective RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite/tratamento farmacológico , Inflamação/tratamento farmacológico , Articulações/microbiologia , Porphyromonas gingivalis , Pironas/farmacologia , Animais , Artrite/microbiologia , Infecções por Bacteroidaceae/sangue , Infecções por Bacteroidaceae/tratamento farmacológico , Modelos Animais de Doenças , Inflamação/sangue , Inflamação/microbiologia , Articulações/citologia , Articulações/efeitos dos fármacos , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Osteoclastos/efeitos dos fármacos , Receptor 2 Toll-Like/sangue , Fator de Necrose Tumoral alfa/sangue
16.
J Control Release ; 258: 171-181, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28522192

RESUMO

Photodynamic therapy (PDT) and photothermal therapy (PTT) have captured much attention due to the great potential to cure malignant tumor. Nevertheless, photodynamic resistance of cancer cells has limited the further efficacy of PDT. Unfortunately, the resistance mechanism and efforts to overcome the resistance still have been rarely reported so far. Here, we report a nanosystem with specific tumor targeting for combined PDT and PTT mediated by near-infrared (NIR) light, which was established by covalently conjugating indocyanine green (ICG) and TNYL peptide onto the surface of hollow gold nanospheres (HAuNS). Our nanosystem (TNYL-ICG-HAuNS) was proved to possess significantly increased light stability, reactive oxygen species (ROS) production and photothermal effect under NIR light irradiation, thus presenting a remarkably enhanced antitumor efficacy. The up-regulation of nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) in cancer cells during PDT induced a significant increase of ABCG2, NQO-1 and HIF-1α expression, causing PDT resistance of the cells. Interestingly, ABCG2 expression could almost keep a normal level in the whole PDT process mediated by TNYL-ICG-HAuNS. After repeated irradiations, TNYL-ICG-HAuNS could still produce almost constant ROS in cells while the Nrf2 expression reduced significantly. Furthermore, PDT resistance induced an obvious decrease of the internalization of free ICG, but didn't influence the cell uptake of TNYL-ICG-HAuNS. Our data explained that TNYL-ICG-HAuNS could overcome the photodynamic resistance of cancer cells, acting as a promising modality for simultaneous photothermal and photodynamic cancer therapy.


Assuntos
Corantes/administração & dosagem , Ouro/química , Verde de Indocianina/administração & dosagem , Nanosferas/química , Neoplasias/terapia , Peptídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Corantes/química , Corantes/uso terapêutico , Terapia Combinada/métodos , Sistemas de Liberação de Medicamentos , Humanos , Hipertermia Induzida/métodos , Verde de Indocianina/química , Verde de Indocianina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Peptídeos/química , Peptídeos/uso terapêutico , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo
17.
Biomaterials ; 131: 36-46, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28376364

RESUMO

The development of combinational anti-tumor therapy is of great value. Here, the thermal-sensitive and hepatic tumor cell targeting peptide-A54 modified polymer, A54-poly(ethylene glycol)-g-poly(acrylamide-co-acrylonitrile) (A54-PEG-g-p(AAm-co-AN)) can self-assemble into an 80 nm-sized micelle, which shows a thermal-sensitive behavior with an upper critical solution temperature (UCST) of 43 °C. This self-assembled and targeted A54-PEG-g-p(AAm-co-AN) micelle can co-encapsulate anti-tumor drug doxorubicin (DOX) and magnetic nanoparticles (MNPs) taking advantage of the hydrophobic core of the core-shell micellar structure, when the temperature is lower than 43 °C. A much higher accumulation of the MNPs@A54-PEG-g-p(AAm-co-AN) to the tumor navigated by the A54 targeting peptide is achieved. Due to the thermal-agent effect of the accumulated MNPs in tumor, the mild microwave (8 W) applied afterwards specifically elevates the local tumor temperature by 13 °C, compared to 6 °C without MNPs accumulation in 30 min. The greater temperature rise resulted from the thermal-agent effect of MNPs doesn't only activate the drug release inside tumor cells, but also achieve an augmented hyperthermia. A mild microwave activated, chemo-thermal combinational tumor therapy is thus developed.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Preparações de Ação Retardada/química , Doxorrubicina/uso terapêutico , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/uso terapêutico , Micelas , Resinas Acrílicas/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Terapia Combinada , Doxorrubicina/administração & dosagem , Feminino , Humanos , Hipertermia Induzida , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Nus , Micro-Ondas , Peptídeos/química , Polietilenoglicóis/química
18.
Small ; 13(15)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28145630

RESUMO

Endometriosis is difficult to treat since the side effects of the current therapeutic method and the high recurrence rate; thus, newer and safer therapeutic approaches are urgently needed. This work investigates the enhanced permeability and retention effect of CdTe quantum dots (QDs) and hollow gold nanospheres (HAuNS) in endometriosis to increase the delivery of HAuNS into lesion cells. The surface of HAuNS is successfully conjugated with a TNYL peptide that has specific affinity for the EphB4 receptor, which is a member of the Eph family of receptor tyrosine kinases. It is found that the EphB4 receptor is overexpressed in endometriosis lesions. The data indicate that both QDs and HAuNS can efficiently accumulate in endometriotic lesions through permeable vessels and the TNYL-conjugated HAuNS (TNYL-HAuNS) accumulate more via the interaction with EphB4. The specific photothermal ablation therapy based on TNYL-HAuNS significantly inhibits the growth of the endometriotic volume and induces the atrophy and degeneration of ectopic endometrium with no detectable toxicity to the normal organs. The level of TNF-α and estradiol also significantly decreases in the endometriotic lesions, indicating that the treatment enables a recovery from hormonal imbalance and inflammatory injury. This work can be a valuable reference for future endometriosis therapy.


Assuntos
Técnicas de Ablação , Endometriose/terapia , Ouro/química , Hipertermia Induzida , Nanosferas/química , Fototerapia , Animais , Compostos de Cádmio/química , Modelos Animais de Doenças , Endometriose/patologia , Feminino , Camundongos , Nanosferas/ultraestrutura , Peptídeos/química , Pontos Quânticos/química , Receptor EphB4/metabolismo , Telúrio/química , Distribuição Tecidual , Resultado do Tratamento
19.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 36(6): 744-8, 2016 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-27491236

RESUMO

OBJECTIVE: To study the fingerprint of Zedoary Turmeric Oil (ZTO) as the bulk drug of Kingkong Elemene for making it safe, effective, stable, and controllable. METHODS: Fingerprints were detected by gas chromatography. ß-elemene peak was regarded as reference peak (S). The relative peak area of each common peak and the relative retention time were calculated. With a total of modes for reference, the fingerprints of 10 batches of Kingkong ZTO were detected, and their similarity was calculated by traditional Chinese medicine (TCM) fingerprint similarity calculation software. RESULTS: The determination method was stable and reliable. Totally 19 common characteristic peaks of Kingkong ZTO was found. The fingerprint similarity of these batches of Kingkong ZTO were not lower than 0.96. CONCLUSIONS: Gas chromatography for detecting the fingerprint of Kingkong ZTO was reliable and repeatable. The established fingerprint of Kingkong ZTO could guarantee the quality stability and safety of different product batches.


Assuntos
Curcuma/química , Óleos de Plantas/química , Sesquiterpenos/química , Cromatografia Gasosa , Medicamentos de Ervas Chinesas/química
20.
ACS Appl Mater Interfaces ; 8(5): 3092-106, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26754032

RESUMO

The development of multifunctional nanoparticles has attracted increasing attention. The versatility of nanoparticles largely depends on their physiochemical properties (especially size). However, the optimized size range may be different for the bioapplications of each function associated with multifunctional nanoparticles. It is important to investigate every optimized size range to ascertain which size enables the best function of the nanoparticles before deciding their final size. In this work, we synthesized a series of monodisperse Fe3O4 nanoparticles with identical surface properties ranging in size from 60 to 310 nm and systematically investigated their biobehavior and application. Our data indicate that compared to their large counterparts, small Fe3O4 nanoparticles exhibited greater cellular internalization and deeper penetration into multicellular spheroids, thus enabling a higher photothermal ablation efficacy in vitro. Interestingly, larger Fe3O4 nanoparticles showed greater accumulation in tumors, thereby inducing more efficient tumor growth inhibition. In addition, 120 nm may be the optimal diameter of Fe3O4 nanoparticles for magnetic resonance imaging and photoacoustic tomography in vitro. However, more efficient in vivo imaging mediated by Fe3O4 nanoparticles will predominantly depend on their high accumulation. Our work presents a different appropriate size range for each biofunction of Fe3O4 nanoparticles, which could be a valuable reference for future nanoparticle design.


Assuntos
Proliferação de Células/efeitos dos fármacos , Compostos Férricos/uso terapêutico , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Humanos , Células MCF-7 , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Tamanho da Partícula , Técnicas Fotoacústicas , Fototerapia , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA