Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Endocrine ; 63(1): 70-78, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30128961

RESUMO

PURPOSE: Oxidative stress is an important mechanism for diabetic nephropathy. Studies showed that hemo oxygenase-1 (HO-1) expression in renal tissue of patients with diabetic nephropathy has upregulated, while the HO-1 can protect the body through anti-oxidative stress. The study aimed to preliminarily explore the molecular mechanism by observing the effect of Sitagliptin on HO-1 expression in renal tissue of rats with diabetic nephropathy. METHODS: The diabetic nephropathy rat model was established by STZ injection followed by intraperitoneal injection of sitagliptin with different concentrations. The mRNA expressions of HO-1 were detected by real-time PCR and Western blot and HO-1 enzyme activity change was detected by colorimetry. Human renal mesangial cell (HRMC) were cultured in vitro with high glucose concentration (30 µmol/L), phosphatidylinositol-3-kinase (PI3K) level and nuclear factor erythroid-2-related factor (Nrf2) content in cytoplasm and cell nucleus were observed before and after treatment with sitagliptin, as well as the action of in meditating HO-1 expression. RESULTS: HO-1 mRNA, protein level, and HO-1 enzyme activity in renal tissue of rats with diabetic nephropathy were significantly increased after treatment with sitagliptin (P < 0.05). As comparison, the 24 h urinary microalbumin, creatinine, and boold urea nitrogen were all decreased after treatment of sitagliptin (P < 0.05). Similar results were observed after CoPP (an agonist of HO-1) treatment (P < 0.05). In contrast, ZnPP, an inhibitor of HO-1, significantly abrogated the inhibitory effect of sitagliptin (P < 0.05). Phosphorylation of PI3K and Nrf2 nuclear translocation under high-glucose concentration condition was induced by sitagliptin in HRMC. HO-1 expression was suppressed by pretreating HRMC with PI3K inhibitor or RNA interference. CONCLUSIONS: Sitagliptin may induce HO-1 expression via activation of PI3K and Nrf2 in rats with diabetic nephropathy; HO-1 can improve the oxidative stress of diabetic nephropathy, eventually protect from diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/enzimologia , Heme Oxigenase (Desciclizante)/biossíntese , Hipoglicemiantes/uso terapêutico , Fosfato de Sitagliptina/uso terapêutico , Animais , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/patologia , Mesângio Glomerular/citologia , Mesângio Glomerular/efeitos dos fármacos , Glucose/farmacologia , Heme Oxigenase (Desciclizante)/efeitos dos fármacos , Humanos , Rim/patologia , Testes de Função Renal , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA