Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomater Sci ; 8(21): 5931-5940, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32966381

RESUMO

Nanomedicine has attracted growing attention due to its designability and functionality, as well as its excellent pharmacokinetics with limited side effects, and recently, combined therapies have become desirable as they can obtain enhanced therapeutic efficacy by using nanomedicine. Herein, we have reported a functional drug delivery system with a dual response to temperature and reactive oxygen species to efficiently eliminate pancreatic cancer cells in a combined therapy strategy. Functional micelles with camptothecin (CPT) in the core and indocyanine green (ICG) on the surface could effectively accumulate in tumor sites through the EPR effect. The ROS in the tumor microenvironment trigger the conversion of an amino-based copolymer to a carboxy based copolymer, releasing the loaded ICG to reduce the size of the micelles with high penetration in tumor tissue. On the one hand, under 808 nm light irradiation, the micelles will produce the heat to kill tumor cells via photothermal therapy. On the other hand, the generated heat could further trigger the transition of a copolymer from a hydrophobic to a hydrophilic state, releasing the loaded CPT into the deep tumor cells to achieve chemotherapy. The in vitro and in vivo experiments revealed that this combined therapy could combat pancreatic cancer cells with an enhanced therapeutic effect.


Assuntos
Neoplasias Pancreáticas , Fototerapia , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Terapia Fototérmica , Espécies Reativas de Oxigênio , Temperatura , Microambiente Tumoral
2.
Planta Med ; 86(10): 665-673, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32365394

RESUMO

Menispermum dauricum is widely used to treat respiratory inflammation, including laryngopharyngitis, tonsillitis, tracheitis, and bronchitis. Total alkaloids isolated from M. dauricum have shown a variety of beneficial bioactivities. However, available data on the effects of M. dauricum total alkaloids against allergic asthma has not been reported. In present study, the protective effect of M. dauricum total alkaloids was evaluated by using an ovalbumin-induced in vivo model of asthma. The asthma model was prepared by sensitizing and challenging mice with ovalbumin, and M. dauricum total alkaloids (100, 200, and 400 mg/kg) were administrated to asthmatic mice by gavage. Histopathological analysis of pulmonary changes was detected by hematoxylin and eosin, and periodic acid-schiff staining. Inflammatory cell counts were determined in bronchoalveolar lavage fluid. Total immunoglobulin E and ovalbumin-specific immunoglobulin E levels in serum, and T-helper 2 cytokines and chemokine levels in bronchoalveolar lavage fluid were detected by an ELISA. Histological results demonstrated that M. dauricum total alkaloids significantly attenuated pulmonary inflammation in asthmatic mice. M. dauricum total alkaloid treatment exhibited marked effects on asthmatic mice in reducing inflammatory cell counts, decreasing interleukin-4, interleukin-5, and interleukin-13 concentrations, and downregulating TNF-α and eotaxin levels in bronchoalveolar lavage fluid. In addition, M. dauricum total alkaloids could also inhibit the elevated serum levels of total immunoglobulin E and ovalbumin-specific immunoglobulin E. These findings confirmed that M. dauricum total alkaloids could suppress airway inflammation in ovalbumin-induced asthma through regulating the T-helper 2 response and chemokine level. M. dauricum total alkaloids may be a potential ethnopharmacological agent for asthmatic patients.


Assuntos
Alcaloides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Menispermum , Animais , Líquido da Lavagem Broncoalveolar , Citocinas , Modelos Animais de Doenças , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/uso terapêutico
3.
ACS Appl Mater Interfaces ; 11(35): 31735-31742, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31393101

RESUMO

Chemodynamic therapy based on Fe2+-catalyzed Fenton reaction holds great promise in cancer treatment. However, low-produced hydroxyl radicals in tumor cells constitute its severe challenges because of the fact that Fe2+ with high catalytic activity could be easily oxidized into Fe3+ with low catalytic activity, greatly lowering Fenton reaction efficacy. Here, we codeliver CuS with the iron-containing prodrug into tumor cells. In tumor cells, the overproduced esterase could cleave the phenolic ester bond in the prodrug to release Fe2+, activating Fenton reaction to produce the hydroxyl radical. Meanwhile, CuS could act as a nanocatalyst for continuously catalyzing the regeneration of high-active Fe2+ from low-active Fe3+ to produce enough hydroxyl radicals to efficiently kill tumor cells as well as a photothermal therapy agent for generating hyperthermia for thermal ablation of tumor cells upon NIR irradiation. The results have exhibited that the approach of photothermal therapy nanomaterials boosting transformation of Fe3+ into Fe2+ in tumor cells can highly improve Fenton reaction for efficient chemodynamic therapy. This strategy was demonstrated to have an excellent antitumor activity both in vitro and in vivo, which provides an innovative perspective to Fenton reaction-based chemodynamic therapy.


Assuntos
Compostos Férricos , Hipertermia Induzida , Neoplasias Experimentais , Fototerapia , Animais , Cobre/química , Cobre/farmacocinética , Cobre/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacocinética , Compostos Férricos/farmacologia , Células HeLa , Humanos , Radical Hidroxila/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Sulfetos/química , Sulfetos/farmacocinética , Sulfetos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
ACS Nano ; 8(10): 10414-25, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25286086

RESUMO

Gold nanocages (AuNCs), which have tunable near-infrared (NIR) absorption and intrinsically high photothermal conversion efficiency, have been actively investigated as photothermal conversion agents for photothermal therapy (PTT). The short blood circulation lifetime of AuNCs, however, limits their tumor uptake and thus in vivo applications. Here we show that such a limitation can be overcome by cloaking AuNCs with red blood cell (RBC) membranes, a natural stealth coating. The fusion of RBC membranes over AuNC surface does not alter the unique porous and hollow structures of AuNCs, and the resulting RBC-membrane-coated AuNCs (RBC-AuNCs) exhibit good colloidal stability. Upon NIR laser irradiation, the RBC-AuNCs demonstrate in vitro photothermal effects and selectively ablate cancerous cells within the irradiation zone as do the pristine biopolymer-stealth-coated AuNCs. Moreover, the RBC-AuNCs exhibit significantly enhanced in vivo blood retention and circulation lifetime compared to the biopolymer-stealth-coated counterparts, as demonstrated using a mouse model. With integrated advantages of photothermal effects from AuNCs and long blood circulation lifetime from RBCs, the RBC-AuNCs demonstrate drastically enhanced tumor uptake when administered systematically, and mice that received PPT cancer treatment modulated by RBC-AuNCs achieve 100% survival over a span of 45 days. Taken together, our results indicate that the long circulating RBC-AuNCs may facilitate the in vivo applications of AuNCs, and the RBC-membrane stealth coating technique may pave the way to improved efficacy of PPT modulated by noble metal nanoparticles.


Assuntos
Membrana Eritrocítica/química , Ouro/química , Nanopartículas Metálicas/química , Fototerapia/métodos , Polietilenoglicóis/química , Humanos , Microscopia Eletrônica de Transmissão
5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(3): 654-8, 2010 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-20496680

RESUMO

In the present paper, after middle pressure chromatograph separation using both positive phase and reversed-phase conditions, the organic additives in ethylene-propylene rubber were identified by infrared spectrometer. At the same time, by using solid phase extraction column to maintain the main component-fuel oil in organic additves to avoid its interfering with minor compounds, other organic additves were separated and analysed by GC/Ms. In addition, the remaining active compound such as benzoyl peroxide was identified by CC/Ms, through analyzing acetone extract directly. Using the above mentioned techniques, soften agents (fuel oil, plant oil and phthalte), curing agent (benzoylperoxide), vulcanizing accelerators (2-mercaptobenzothiazole, ethyl thiuram and butyl thiuram), and antiagers (2, 6-Di-tert-butyl-4-methyl phenol and styrenated phenol) in ethylene-propylene rubber were identified. Although the technique was established in ethylene-propylene rubber system, it can be used in other rubber system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA