Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 13(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34836236

RESUMO

Protein supplementation is a commonly employed strategy to enhance resistance training adaptations. However, little research to date has examined if peanut protein supplementation is effective in this regard. Thus, we sought to determine if peanut protein supplementation (PP; 75 total g/d of powder providing 30 g/d protein, >9.2 g/d essential amino acids, ~315 kcal/d) affected resistance training adaptations in college-aged adults. Forty-seven college-aged adults (n = 34 females, n = 13 males) with minimal prior training experience were randomly assigned to a PP group (n = 18 females, n = 5 males) or a non-supplement group (CTL; n = 16 females, n = 8 males) (ClinicalTrials.gov trial registration NCT04707963; registered 13 January 2021). Body composition and strength variables were obtained prior to the intervention (PRE). Participants then completed 10 weeks of full-body resistance training (twice weekly) and PP participants consumed their supplement daily. POST measures were obtained 72 h following the last training bout and were identical to PRE testing measures. Muscle biopsies were also obtained at PRE, 24 h following the first exercise bout, and at POST. The first two biopsy time points were used to determine myofibrillar protein synthesis (MyoPS) rates in response to a naïve training bout with or without PP, and the PRE and POST biopsies were used to determine muscle fiber adaptations in females only. Dependent variables were analyzed in males and females separately using two-way (supplement × time) repeated measures ANOVAs, unless otherwise stated. The 24-h integrated MyoPS response to the first naïve training bout was similar between PP and CTL participants (dependent samples t-test p = 0.759 for females, p = 0.912 for males). For males, the only significant supplement × time interactions were for DXA-derived fat mass (interaction p = 0.034) and knee extensor peak torque (interaction p = 0.010); these variables significantly increased in the CTL group (p < 0.05), but not the PP group. For females, no significant supplement × time interactions existed, although interactions for whole body lean tissue mass (p = 0.088) and vastus lateralis thickness (p = 0.099) approached significance and magnitude increases in these characteristics favored the PP versus CTL group. In summary, this is the second study to determine the effects of PP supplementation on resistance training adaptations. While PP supplementation did not significantly enhance training adaptations, the aforementioned trends in females, the limited n-size in males, and this being the second PP supplementation study warrant more research to determine if different PP dosing strategies are more effective than the current approach.


Assuntos
Adaptação Fisiológica , Arachis/química , Suplementos Nutricionais , Proteínas de Plantas/farmacologia , Treinamento Resistido , Adaptação Fisiológica/efeitos dos fármacos , Aminoácidos/análise , Composição Corporal , Ingestão de Alimentos , Feminino , Humanos , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/diagnóstico por imagem , Miofibrilas/metabolismo , Biossíntese de Proteínas , Coxa da Perna/diagnóstico por imagem , Adulto Jovem
2.
Front Nutr ; 8: 610382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327207

RESUMO

The purpose of this study was to validate the efficacy of a customized vitamin-mineral supplement on blood biomarkers in pre-menopausal females. Women (21-40 years old) who were apparently healthy were recruited from the local community (ClinicalTrials.gov trial registration NCT03828097). Pretesting (PRE) occurred in the morning 5 ± 2 days following each participant's menses and involved a fasted blood draw, body mass assessment, and blood pressure assessment. Participants were then randomly assigned in a double-blinded fashion to either the multivitamins (MV) (n = 43) or placebo group (n = 51). Participants consumed two capsules per day with breakfast for 12 weeks. Following the trial, participants reported to the laboratory for POST assessments, which replicated PRE procedures. Red blood cell fatty acid and serum micronutrient analyses were performed in a blinded fashion at hematology laboratories. A group × time interaction was observed for serum vitamin D levels (p < 0.001). MV increased levels from PRE to POST (+43.7%, p < 0.001), whereas no change occurred in the placebo group. Additionally, 78% of MV participants at PRE exhibited inadequate vitamin D levels (<40 ng/dl), whereas only 30% exhibited levels below this threshold at POST. An interaction was also observed for serum folate levels (p < 0.001). MV increased serum folate from PRE to POST (p < 0.001), whereas no change occurred in the placebo group. Red blood cell omega-3 fatty acid content increased from PRE to POST in the MV group (p < 0.001) and placebo group (p < 0.05), although POST values were greater in the MV group (p < 0.001). An interaction was observed for serum HDL cholesterol levels (p = 0.047), and a non-significant increase in this variable from PRE to POST occurred in the MV group (p = 0.060). Four-day food recalls indicated MV increased intake of omega-3 fatty acids, vitamin D, folate, and other micronutrients. In summary, MV supplementation increased serum vitamin D, serum folate, and red blood cell omega-3 fatty acid levels. However, these data are limited to healthy females, and more research is needed to examine if MV can affect metabolic disturbances in individuals with micronutrient deficiencies.

3.
J Int Soc Sports Nutr ; 17(1): 66, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317565

RESUMO

Several studies suggest resistance training (RT) while supplementing with various protein supplements can enhance strength and muscle mass in older individuals. However, to date, no study has examined the effects of RT with a peanut protein powder (PP) supplement on these outcomes. Herein, 39 older, untrained individuals (n = 17 female, n = 22 male; age = 58.6 ± 8.0 years; body mass index =28.7 ± 5.8) completed a 6-week (n = 22) or 10-week (n = 17) RT program, where full-body training was implemented twice weekly (ClinicalTrials.gov trial registration NCT04015479; registered July 11, 2019). Participants in each program were randomly assigned to consume either a PP supplement once per day (75 total g powder providing 30 g protein, > 9.2 g essential amino acids, ~ 315 kcal; n = 20) or no supplement (CTL; n = 19). Right leg vastus lateralis (VL) muscle biopsies were obtained prior to and 24 h following the first training bout in all participants to assess the change in myofibrillar protein synthetic rates (MyoPS) as measured via the deuterium-oxide (D2O) tracer method. Pre- and Post-intervention testing in all participants was conducted using dual energy x-ray absorptiometry (DXA), VL ultrasound imaging, a peripheral quantitative computed tomography (pQCT) scan at the mid-thigh, and right leg isokinetic dynamometer assessments. Integrated MyoPS rates over a 24-h period were not significantly different (p < 0.05) between supplement groups following the first training bout. Regarding chronic changes, there were no significant supplement-by-time interactions in DXA-derived fat mass, lean soft tissue mass or percent body fat between supplementation groups. There was, however, a significant increase in VL thickness in PP versus CTL participants when the 6- and 10-week cohorts were pooled (interaction p = 0.041). There was also a significant increase in knee flexion torque in the 10-week PP group versus the CTL group (interaction p = 0.032). In conclusion, a higher-protein, defatted peanut powder supplement in combination with RT positively affects select markers of muscle hypertrophy and strength in an untrained, older adult population. Moreover, subanalyses indicated that gender did not play a role in these adaptations.


Assuntos
Arachis/química , Suplementos Nutricionais , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Proteínas de Vegetais Comestíveis/administração & dosagem , Treinamento Resistido/métodos , Absorciometria de Fóton , Adaptação Fisiológica/fisiologia , Idoso , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/biossíntese , Músculo Quadríceps/fisiologia , Torque
4.
Nutrients ; 12(8)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722609

RESUMO

Training civilians to be soldiers is a challenging task often resulting in musculoskeletal injuries, especially bone stress injuries. This study evaluated bone health biomarkers (P1NP/CTX) and whey protein or carbohydrate supplementations before and after Army initial entry training (IET). Ninety male IET soldiers participated in this placebo-controlled, double-blind study assessing carbohydrate and whey protein supplementations. Age and fat mass predicted bone formation when controlling for ethnicity, explaining 44% (p < 0.01) of bone formation variations. Age was the only significant predictor of bone resorption (p = 0.02) when controlling for run, fat, and ethnicity, and these factors together explained 32% of the variance in bone resorption during week one (p < 0.01). Vitamin D increased across training (p < 0.01). There was no group by time interaction for supplementation and bone formation (p = 0.75), resorption (p = 0.73), Vitamin D (p = 0.36), or calcium (p = 0.64), indicating no influence of a supplementation on bone biomarkers across training. Age, fitness, fat mass, and ethnicity were important predictors of bone metabolism. The bone resorption/formation ratio suggests IET soldiers are at risk of stress injuries. Male IET soldiers are mildly to moderately deficient in vitamin D and slightly deficient in calcium throughout training. Whey protein or carbohydrate supplementations did not affect the markers of bone metabolism.


Assuntos
Osso e Ossos/efeitos dos fármacos , Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais , Militares , Condicionamento Físico Humano/fisiologia , Proteínas do Soro do Leite/administração & dosagem , Adulto , Biomarcadores/sangue , Densidade Óssea , Reabsorção Óssea , Cálcio/sangue , Método Duplo-Cego , Humanos , Masculino , Osteogênese/efeitos dos fármacos , Vitamina D/sangue , Adulto Jovem
5.
Nutrients ; 10(9)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200582

RESUMO

We investigated the effects of whey protein (WP) supplementation on body composition and physical performance in soldiers participating in Army Initial Entry Training (IET). Sixty-nine, male United States Army soldiers volunteered for supplementation with either twice daily whey protein (WP, 77 g/day protein, ~580 kcal/day; n = 34, age = 19 ± 1 year, height = 173 ± 6 cm, weight = 73.4 ± 12.7 kg) or energy-matched carbohydrate (CHO) drinks (CHO, 127 g/day carbohydrate, ~580 kcal/day; n = 35, age = 19 ± 1 year, height = 173 ± 5 cm, weight = 72.3 ± 10.9 kg) for eight weeks during IET. Physical performance was evaluated using the Army Physical Fitness Test during weeks two and eight. Body composition was assessed using 7-site skinfold assessment during weeks one and nine. Post-testing push-up performance averaged 7 repetitions higher in the WP compared to the CHO group (F = 10.1, p < 0.001) when controlling for baseline. There was a significant decrease in fat mass at post-training (F = 4.63, p = 0.04), but no significant change in run performance (F = 3.50, p = 0.065) or fat-free mass (F = 0.70, p = 0.41). Effect sizes for fat-free mass gains were large for both the WP (Cohen's d = 0.44) and CHO (Cohen's d = 0.42) groups. WP had a large effect on fat mass (FM) loss (Cohen's d = -0.67), while CHO had a medium effect (Cohen's d = -0.40). Twice daily supplementation with WP improved push-up performance and potentiated reductions in fat mass during IET training in comparison to CHO supplementation.


Assuntos
Composição Corporal , Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais , Militares , Valor Nutritivo , Condicionamento Físico Humano/métodos , Aptidão Física , Proteínas do Soro do Leite/administração & dosagem , Adiposidade , Adolescente , Método Duplo-Cego , Humanos , Masculino , Força Muscular , Estado Nutricional , Resistência Física , Fatores de Tempo , Adulto Jovem
6.
Eur J Appl Physiol ; 118(11): 2465-2476, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30155761

RESUMO

PURPOSE: Betalains are indole-derived pigments found in beet root, and recent studies suggest that they may exert ergogenic effects. Herein, we examined if supplementation for 7 days with betalain-rich beetroot concentrate (BLN) improved cycling performance or altered hemodynamic and serum analytes prior to, during and following a cycling time trial (TT). METHODS: Twenty-eight trained male cyclists (29 ± 10 years, 77.3 ± 13.3 kg, and 3.03 ± 0.62 W/kg) performed a counterbalanced crossover study whereby BLN (100 mg/day) or placebo (PLA) supplementation occurred over 7 days with a 1-week washout between conditions. On the morning of day seven of each supplementation condition, participants consumed one final serving of BLN or PLA and performed a 30-min cycling TT with concurrent assessment of several physiological variables and blood markers. RESULTS: BLN supplementation improved average absolute power compared to PLA (231.6 ± 36.2 vs. 225.3 ± 35.8 W, p = 0.050, d = 0.02). Average relative power, distance traveled, blood parameters (e.g., pH, lactate, glucose, NOx) and inflammatory markers (e.g., IL-6, IL-8, IL-10, TNFα) were not significantly different between conditions. BLN supplementation significantly improved exercise efficiency (W/ml/kg/min) in the last 5 min of the TT compared to PLA (p = 0.029, d = 0.45). Brachial artery blood flow in the BLN condition, immediately post-exercise, tended to be greater compared to PLA (p = 0.065, d = 0.32). CONCLUSIONS: We report that 7 days of BLN supplementation modestly improves 30-min TT power output, exercise efficiency as well as post-exercise blood flow without increasing plasma NOx levels or altering blood markers of inflammation, oxidative stress, and/or hematopoiesis.


Assuntos
Desempenho Atlético/fisiologia , Betalaínas/administração & dosagem , Ciclismo/fisiologia , Suplementos Nutricionais , Consumo de Oxigênio/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Adulto , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Adulto Jovem
7.
J Int Soc Sports Nutr ; 14: 38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959158

RESUMO

BACKGROUND: We sought to determine if a pre-workout supplement (PWS), containing multiple ingredients thought to enhance blood flow, increases hyperemia associated with resistance training compared to placebo (PBO). Given the potential interaction with training loads/time-under-tension, we evaluated the hyperemic response at two different loads to failure. METHODS: Thirty males participated in this double-blinded study. At visit 1, participants were randomly assigned to consume PWS (Reckless™) or PBO (maltodextrin and glycine) and performed four sets of leg extensions to failure at 30% or 80% of their 1-RM 45-min thereafter. 1-wk. later (visit 2), participants consumed the same supplement as before, but exercised at the alternate load. Heart rate (HR), blood pressure (BP), femoral artery blood flow, and plasma nitrate/nitrite (NOx) were assessed at baseline (BL), 45-min post-PWS/PBO consumption (PRE), and 5-min following the last set of leg extensions (POST). Vastus lateralis near infrared spectroscopy (NIRS) was employed during leg extension exercise. Repeated measures ANOVAs were performed with time, supplement, and load as independent variables and Bonferroni correction applied for multiple post-hoc comparisons. Data are reported as mean ± SD. RESULTS: With the 30% training load compared to 80%, significantly more repetitions were performed (p < 0.05), but there was no difference in total volume load (p > 0.05). NIRS derived minimum oxygenated hemoglobin (O2Hb) was lower in the 80% load condition compared to 30% for all rest intervals between sets of exercise (p < 0.0167). HR and BP did not vary as a function of supplement or load. Femoral artery blood flow at POST was higher independent of exercise load and treatment. However, a time*supplement*load interaction was observed revealing greater femoral artery blood flow with PWS compared to PBO at POST in the 80% (+56.8%; p = 0.006) but not 30% load condition (+12.7%; p = 0.476). Plasma NOx was ~3-fold higher with PWS compared to PBO at PRE and POST (p < 0.001). CONCLUSIONS: Compared to PBO, the PWS consumed herein augmented hyperemia following multiple sets to failure at 80% of 1-RM, but not 30%. This specificity may be a product of interaction with local perturbations (e.g., reduced tissue oxygenation levels [minimum O2Hb] in the 80% load condition) and/or muscle fiber recruitment.


Assuntos
Suplementos Nutricionais , Hiperemia/fisiopatologia , Perna (Membro)/irrigação sanguínea , Perna (Membro)/fisiologia , Músculo Esquelético/irrigação sanguínea , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Adulto , Método Duplo-Cego , Metabolismo Energético/fisiologia , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiologia , Voluntários Saudáveis , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Força Muscular/efeitos dos fármacos , Força Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Resistência Física , Fluxo Sanguíneo Regional/efeitos dos fármacos , Resultado do Tratamento , Adulto Jovem
8.
Nutrients ; 9(9)2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28869573

RESUMO

We sought to determine the effects of L-leucine (LEU) or different protein supplements standardized to LEU (~3.0 g/serving) on changes in body composition, strength, and histological attributes in skeletal muscle and adipose tissue. Seventy-five untrained, college-aged males (mean ± standard error of the mean (SE); age = 21 ± 1 years, body mass = 79.2 ± 0.3 kg) were randomly assigned to an isocaloric, lipid-, and organoleptically-matched maltodextrin placebo (PLA, n = 15), LEU (n = 14), whey protein concentrate (WPC, n = 17), whey protein hydrolysate (WPH, n = 14), or soy protein concentrate (SPC, n = 15) group. Participants performed whole-body resistance training three days per week for 12 weeks while consuming supplements twice daily. Skeletal muscle and subcutaneous (SQ) fat biopsies were obtained at baseline (T1) and ~72 h following the last day of training (T39). Tissue samples were analyzed for changes in type I and II fiber cross sectional area (CSA), non-fiber specific satellite cell count, and SQ adipocyte CSA. On average, all supplement groups including PLA exhibited similar training volumes and experienced statistically similar increases in total body skeletal muscle mass determined by dual X-ray absorptiometry (+2.2 kg; time p = 0.024) and type I and II fiber CSA increases (+394 µm² and +927 µm²; time p < 0.001 and 0.024, respectively). Notably, all groups reported increasing Calorie intakes ~600-800 kcal/day from T1 to T39 (time p < 0.001), and all groups consumed at least 1.1 g/kg/day of protein at T1 and 1.3 g/kg/day at T39. There was a training, but no supplementation, effect regarding the reduction in SQ adipocyte CSA (-210 µm²; time p = 0.001). Interestingly, satellite cell counts within the WPC (p < 0.05) and WPH (p < 0.05) groups were greater at T39 relative to T1. In summary, LEU or protein supplementation (standardized to LEU content) does not provide added benefit in increasing whole-body skeletal muscle mass or strength above PLA following 3 months of training in previously untrained college-aged males that increase Calorie intakes with resistance training and consume above the recommended daily intake of protein throughout training. However, whey protein supplementation increases skeletal muscle satellite cell number in this population, and this phenomena may promote more favorable training adaptations over more prolonged periods.


Assuntos
Adiposidade , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Leucina/administração & dosagem , Força Muscular , Hidrolisados de Proteína/administração & dosagem , Músculo Quadríceps/fisiologia , Treinamento Resistido , Proteínas de Soja/administração & dosagem , Gordura Subcutânea/fisiologia , Proteínas do Soro do Leite/administração & dosagem , Absorciometria de Fóton , Alabama , Biópsia , Proteínas Alimentares/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Método Duplo-Cego , Ingestão de Energia , Humanos , Leucina/efeitos adversos , Masculino , Hidrolisados de Proteína/efeitos adversos , Músculo Quadríceps/citologia , Músculo Quadríceps/diagnóstico por imagem , Proteínas de Soja/efeitos adversos , Gordura Subcutânea/citologia , Gordura Subcutânea/diagnóstico por imagem , Fatores de Tempo , Resultado do Tratamento , Ultrassonografia , Proteínas do Soro do Leite/efeitos adversos , Adulto Jovem
9.
J Diet Suppl ; 14(6): 653-666, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28388294

RESUMO

The increasing interest in weight loss has seen a concurrent rise in the supplemental use of thermogenics to aid weight loss efforts. To date, the effectiveness and safety of supplemental proprietary blend thermogenics, in conjunction with high-protein energy-restricted diets have not been thoroughly evaluated. The purpose of this study was to investigate the efficacy of a low-calorie, high-protein diet with and without the concomitant use of a thermogenic supplement on body weight and body composition in apparently healthy females. Subjects were divided into three groups, Bizzy Diet+FitMiss Burn (BURN, N = 12), Bizzy Diet+Placebo (PLA, N = 13), and Control (CON, N = 14), and underwent two testing sessions separated by approximately 3 weeks. Resting blood pressure (BP), resting heart rate (RHR), clinical safety markers, body weight (BW), and body composition were assessed during each testing session. Repeated measures analysis of variance (ANOVA) revealed a significant effect for time relative to BW, total body fat mass (FM), leg FM, and trunk FM. Post hoc analysis revealed that the BURN and PLA groups experienced significant decreases in both BW and total body FM compared to CON (p <.05). There were no significant interactions for BP, RHR, or clinical safety markers over the course of the study. The Bizzy Diet, both with and without the addition of FitMiss Burn thermogenic, appears to be safe for short-term use and may lead to greater improvement in body composition and BW in an apparently healthy female population.


Assuntos
Restrição Calórica , Dieta Redutora , Suplementos Nutricionais , Micronutrientes/administração & dosagem , Adolescente , Adulto , Pressão Sanguínea/efeitos dos fármacos , Composição Corporal , Índice de Massa Corporal , Dieta Rica em Proteínas , Método Duplo-Cego , Exercício Físico , Feminino , Humanos , Termogênese , Adulto Jovem
10.
J Int Soc Sports Nutr ; 13: 30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27468258

RESUMO

BACKGROUND: Amino acid supplementation has been shown to potentially reduced exercise-induced muscle soreness. Thus, the purpose of this study was to examine if branched chain amino acid and carbohydrate (BCAACHO) versus carbohydrate-only sports drink (CHO) supplementation attenuated markers of muscle damage while preserving performance markers following 3 days of intense weight training. METHODS: Healthy resistance-trained males (n = 30) performed preliminary testing (T1) whereby they: 1) donated a baseline blood draw, 2) performed knee extensor dynamometry to obtain peak quadriceps isometric and isokinetic torque as well as electromyography (EMG) activity at 60°/s and 120°/s, and 3) performed a one repetition maximum (1RM) barbell back squat. The following week participants performed 10 sets x 5 repetitions at 80 % of their 1RM barbell back squat for 3 consecutive days and 48 h following the third lifting bout participants returned for (T2) testing whereby they repeated the T1 battery. Immediately following and 24 h after the three lifting bouts, participants were randomly assigned to consume one of two commercial products in 600 mL of tap water: 1) BCAAs and CHO (3 g/d L-leucine, 1 g/d L-isoleucine and 2 g/d L-valine with 2 g of CHO; n = 15), or 2) 42 g of CHO only (n = 15). Additionally, venous blood was drawn 24 h following the first and second lifting bouts and 48 h following the third bout to assess serum myoglobin concentrations, and a visual analog scale was utilized prior, during, and after the 3-d protocol to measure subjective perceptions of muscular soreness. RESULTS: There were similar decrements in 1RM squat strength and isokinetic peak torque measures in the BCAA-CHO and CHO groups. Serum myoglobin concentrations (p = 0.027) and perceived muscle soreness (p < 0.001) increased over the intervention regardless of supplementation. A group*time interaction was observed for monocyte percentages (p = 0.01) whereby BCAA-CHO supplementation attenuated increases in this variable over the duration of the protocol compared to CHO supplementation. CONCLUSION: BCAA-CHO supplementation did not reduce decrements in lower body strength or improve select markers of muscle damage/soreness compared to CHO supplementation over three consecutive days of intense lower-body training.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Carboidratos da Dieta/farmacologia , Suplementos Nutricionais , Fadiga Muscular/efeitos dos fármacos , Mialgia/metabolismo , Treinamento Resistido , Adulto , Aminoácidos de Cadeia Ramificada/administração & dosagem , Biomarcadores/metabolismo , Carboidratos da Dieta/administração & dosagem , Humanos , Inflamação/metabolismo , Masculino , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Fenômenos Fisiológicos da Nutrição Esportiva
11.
Amino Acids ; 48(3): 779-789, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26553453

RESUMO

We examined if supplementing trained cyclists (32 ± 2 year, 77.8 ± 2.6 kg, and 7.4 ± 1.2 year training) with 12 g/day (6 g/day L-Leucine, 2 g/day L-Isoleucine and 4 g/day L-Valine) of either branched-chain amino acids (BCAAs, n = 9) or a maltodextrin placebo (PLA, n = 9) over a 10-week training season affected select body composition, performance, and/or immune variables. Before and after the 10-week study, the following was assessed: (1) 4-h fasting blood draws; (2) dual X-ray absorptiometry body composition; (3) Wingate peak power tests; and (4) 4 km time-trials. No group × time interactions existed for total lean mass (P = 0.27) or dual-leg lean mass (P = 0.96). A significant interaction existed for body mass-normalized relative peak power (19 % increase in the BCAA group pre- to post-study, P = 0.01), and relative mean power (4 % increase in the BCAA group pre- to post-study, P = 0.01). 4 km time-trial time to completion approached a significant interaction (P = 0.08), as the BCAA group improved in this measure by 11 % pre- to post-study, though this was not significant (P = 0.15). There was a tendency for the BCAA group to present a greater post-study serum BCAA: L-Tryptophan ratio compared to the PLA group (P = 0.08). A significant interaction for neutrophil number existed (P = 0.04), as there was a significant 18 % increase within the PLA group from the pre- to post-study time point (P = 0.01). Chronic BCAA supplementation improves sprint performance variables in endurance cyclists. Additionally, given that BCAA supplementation blunted the neutrophil response to intense cycling training, BCAAs may benefit immune function during a prolonged cycling season.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Atletas , Suplementos Nutricionais/análise , Neutrófilos/imunologia , Resistência Física , Adulto , Composição Corporal , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Adulto Jovem
12.
J Bodyw Mov Ther ; 17(1): 42-5, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23294682

RESUMO

OBJECTIVES: In this case review we report on a bodybuilder who used a practical model of blood flow restriction (BFR) training to successfully rehabilitate himself following an injury to his right knee. RESULTS: The patient originally thought he had torn his meniscus however repeat radiographs and magnetic resonance imaging (MRI) confirmed an osteochondral fracture. The patient initially sought out a low load alternative to help with the maintenance of skeletal muscle mass. However, following rehabilitation with low load BFR resistance training, radiographs indicated that the bone had begun to heal suggesting that this type of training may also benefit bone. CONCLUSIONS: In conclusion, this case review provides evidence that practical BFR using knee wraps can serve as an effective stimulus during rehabilitation from a knee injury.


Assuntos
Traumatismos em Atletas/reabilitação , Cartilagem Articular/lesões , Traumatismos do Joelho/reabilitação , Articulação do Joelho/irrigação sanguínea , Treinamento Resistido/métodos , Levantamento de Peso/lesões , Traumatismos em Atletas/diagnóstico , Desempenho Atlético/fisiologia , Fraturas Ósseas/diagnóstico , Fraturas Ósseas/reabilitação , Humanos , Escala de Gravidade do Ferimento , Traumatismos do Joelho/diagnóstico , Imageamento por Ressonância Magnética/métodos , Masculino , Fluxo Sanguíneo Regional/fisiologia , Resultado do Tratamento , Resistência Vascular , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA