Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(12): 5502-5514, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38016693

RESUMO

Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.


Assuntos
Curcumina , Glioblastoma , Fotoquimioterapia , Humanos , Animais , Feminino , Fotoquimioterapia/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Galinhas , Linhagem Celular Tumoral
2.
ScientificWorldJournal ; 2012: 712048, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272179

RESUMO

The secretase BACE1 is fundamentally involved in the development of cerebral amyloid pathology in Alzheimer's disease (AD). It has not been studied so far to what extent BACE1 activity in cerebrospinal fluid (CSF) mirrors in vivo amyloid load in AD. We explored associations between CSF BACE1 activity and fibrillar amyloid pathology as measured by carbon-11-labelled Pittsburgh Compound B positron emission tomography ([¹¹C]PIB PET). [¹¹C]PIB and CSF studies were performed in 31 patients with AD. Voxel-based linear regression analysis revealed significant associations between CSF BACE1 activity and [¹¹C]PIB tracer uptake in the bilateral parahippocampal region, the thalamus, and the pons. Our study provides evidence for a brain region-specific correlation between CSF BACE1 activity and in-vivo fibrillar amyloid pathology in AD. Associations were found in areas close to the brain ventricles, which may have important implications for the use of BACE1 in CSF as a marker for AD pathology and for antiamyloid treatment monitoring.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Amiloide/análise , Ácido Aspártico Endopeptidases/líquido cefalorraquidiano , Química Encefálica , Idoso , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Feminino , Hipocampo/química , Humanos , Masculino , Neuroimagem , Ponte/química , Tomografia por Emissão de Pósitrons , Tálamo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA