Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(9): e2206851, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709479

RESUMO

Photodynamic therapy (PDT) is a light triggered therapy by producing reactive oxygen species (ROS), but traditional PDT may suffer from the real-time illumination that reduces the compliance of treatment and cause phototoxicity. A supramolecular photoactive G-quartet based material is reported, which is self-assembled from guanosine (G) and 4-formylphenylboronic acid/1,8-diaminooctane, with incorporation of riboflavin as a photocatalyst to the G4 nanowire, for post-irradiation photodynamic antibacterial therapy. The G4-materials, which exhibit hydrogel-like properties, provide a scaffold for loading riboflavin, and the reductant guanosine for the riboflavin for phototriggered production of the therapeutic H2 O2 . The photocatalytic activity shows great tolerance against room temperature storage and heating/cooling treatments. The riboflavin-loaded G4 hydrogels, after photo-irradiation, are capable of killing gram-positive bacteria (e.g., Staphylococcus aureus), gram-negative bacteria (e.g., Escherichia coli), and multidrug resistant bacteria (methicillin-resistant Staphylococcus aureus) with sterilization ratio over 99.999%. The post-irradiated hydrogels also exhibit great antibacterial activity in the infected wound of the rats, revealing the potential of this novel concept in the light therapy.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Infecção dos Ferimentos , Ratos , Animais , Escherichia coli , Riboflavina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Hidrogéis/uso terapêutico
2.
Nat Commun ; 13(1): 7164, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418895

RESUMO

Nanotechnology enlightens promising antibacterial strategies while the complex in vivo infection environment poses a great challenge to the rational design of nanoplatforms for safe and effective anti-infective therapy. Herein, a biomimetic nanoplatform (EV-Pd-Pt) integrating electrodynamic Pd-Pt nanosheets and natural ginger-derived extracellular vesicles (EVs) is proposed. The introduction of ginger-derived EVs greatly endows EV-Pd-Pt with prolonged blood circulation without immune clearance, as well as accumulation at infection sites. More interestingly, EV-Pd-Pt can enter the interior of bacteria in an EV lipid-dependent manner. At the same time, reactive oxygen species are sustainably generated in situ to overcome the limitations of their short lifetime and diffusion distance. Notably, EV-Pd-Pt nanoparticle-mediated electrodynamic and photothermal therapy exhibit synergistic effects. Furthermore, the desirable biocompatibility and biosafety of the proposed nanoplatform guarantee the feasibility of in vivo applications. This proof-of-concept work holds significant promise for developing biomimetic nanoparticles by exploiting their intrinsic properties for synergistic anti-infective therapy.


Assuntos
Vesículas Extracelulares , Nanopartículas , Zingiber officinale , Biomimética
3.
Biomaterials ; 274: 120885, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022740

RESUMO

It is of great significance to develop multifunctional gene carriers to achieve treatments with enhanced therapeutic effects in an inflammation-free manner. In this work, assembled micelles of polysaccharide were utilized for the biomineralization of calcium carbonate to produce one-dimensional Alg-CaCO3 nanoparticles. In order to introduce both functions of mild hyperthermia and gene transfection, polydopamine (PDA) coating was applied to conjugate cationic polymers on the surface of nanoparticles. The resultant ACDP nanohybrids exhibited enhanced performance as gene carriers under near infrared (NIR) light irradiation at a low power density. Meanwhile, the pH-responsive degradation of gene carriers could further promote gene release for better effectiveness. The enhanced gene therapy induces tumor cell apoptosis, which could prevent inflammatory responses. The feasibility of mild hyperthermia-enhanced gene therapy for tumor treatment was investigated in vitro and in vivo. In addition, dual-modal ultrasound (US) and photoacoustic (PA) imaging was also realized to monitor and guide the treatment processes. The current work provides a new avenue for the construction of multifunctional platform to realize cancer therapy with improved therapeutic effectiveness in an inflammation-free manner.


Assuntos
Hipertermia Induzida , Nanopartículas , Animais , Carbonato de Cálcio , Terapia Genética , Calefação , Camundongos , Camundongos Endogâmicos BALB C , Fototerapia
4.
ACS Nano ; 14(2): 2265-2275, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32017535

RESUMO

Biomedical device-associated infection (BAI) is a great challenge in modern clinical medicine. Therefore, developing efficient antibacterial materials is significantly important and meaningful for the improvement of medical treatment and people's health. In the present work, we developed a strategy of surface functionalization for multifunctional antibacterial applications. A functionalized polyurethane (PU, a widely used biomedical material for hernia repairing) surface (PU-Au-PEG) with inherent antifouling and photothermal bactericidal properties was readily prepared based on a near-infrared (NIR)-responsive organic/inorganic hybrid coating which consists of gold nanorods (Au NRs) and polyethylene glycol (PEG). The PU-Au-PEG showed a high efficiency to resist adhesion of bacteria and exhibited effective photothermal bactericidal properties under 808 nm NIR irradiation, especially against multidrug-resistant bacteria. Furthermore, the PU-Au-PEG could inhibit biofilm formation long term. The biocompatibility of PU-Au-PEG was also proved by cytotoxicity and hemolysis tests. The in vivo photothermal antibacterial properties were first verified by a subcutaneous implantation animal model. Then, the anti-infection performance in a clinical scenario was studied with an infected hernia model. The results of animal experiment studies demonstrated excellent in vivo anti-infection performances of PU-Au-PEG. The present work provides a facile and promising approach to develop multifunctional biomedical devices.


Assuntos
Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Hérnia Inguinal/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Antibacterianos/química , Modelos Animais de Doenças , Ouro/química , Ouro/farmacologia , Hérnia Inguinal/microbiologia , Hérnia Inguinal/cirurgia , Nanotubos/química , Tamanho da Partícula , Fototerapia , Polímeros/química , Polímeros/farmacologia , Poliuretanos/química , Poliuretanos/farmacologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 11(19): 17177-17183, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30997794

RESUMO

Because of the abuse of antibiotics and threats of antibiotic resistance, bacterial infection is still one of the most difficult issues to be resolved. Thus, it is of great significance to explore novel antibacterial agents. In this paper, we investigated a type of silica-coated gold-silver nanocages (Au-Ag@SiO2 NCs) as antibacterial candidates. Their intrinsic characteristics of photothermal property and sustained release of Ag ions were fully exploited for near-infrared (NIR)-induced combined anti-infective therapy. The broad-spectrum antibacterial property of the as-prepared Au-Ag@SiO2 NCs was confirmed in vitro against Gram-positive Staphylococcus aureus ( S. aureus) and Gram-negative bacteria Escherichia coli ( E. coli). In addition, Au-Ag@SiO2 NCs exhibit effective treatment of the S. aureus biofilm with the assistance of NIR irradiation. More importantly, we assessed the in vivo antibacterial efficacy of Au-Ag@SiO2 NCs against S. aureus, which demonstrated sustainably enhanced therapeutic effects on a rat model with wound infection.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Prata/química , Animais , Antibacterianos/química , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Ouro/química , Humanos , Testes de Sensibilidade Microbiana , Ratos , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA