Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 383: 132387, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182862

RESUMO

To characterize the structure of purified raspberry pectin and discuss the impact of different extraction methods on the pectin structure, raspberry pectin was extracted by hot-acid and enzyme method and purified by stepwise ethanol precipitation and ion-exchange chromatography isolation. Enzyme-extracted raspberry pectin (RPE50%-3) presented relatively intact structure with molecular weight of 5 × 104 g/mol and the degree of methylation was 39%. The 1D/2D NMR analysis demonstrated RPE50%-3 was a high-branched pectin mainly containing 50% homogalacturonan, 16% branched α-1,5-arabinan and α-1,3-arabinan, 18% ß-1,4-galactan and ß-1,6-galactan. Acid-extracted raspberry pectin (RPA50%-3) contained less arabinan than RPE50%-3. Moreover, RPE50%-3 inhibited the nitric oxide (NO), TNF-α, IL-6 production of lipopolysaccharide-induced macrophages by 67%, 22% and 46% at the dosage of 200 ug/mL, while the inhibitory rate of RPA50%-3 were 33%, 9%, and 1%, respectively. These results suggested that enzyme-extracted raspberry pectin contained more arabinan sidechains and exhibited better immunomodulatory effect.


Assuntos
Rubus , Anti-Inflamatórios/farmacologia , Galactanos/química , Peso Molecular , Pectinas/química , Polissacarídeos/química
2.
Compr Rev Food Sci Food Saf ; 20(2): 2015-2039, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33594822

RESUMO

Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.


Assuntos
Frutas , Pectinas , Parede Celular , Polissacarídeos , Verduras
3.
J Agric Food Chem ; 68(32): 8688-8701, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32633953

RESUMO

Obesity is associated with gut microbiome dysbiosis. Our previous research has shown that highly branched rhamnogalacturonan type I (RG-I)-enriched pectin (WRP, 531.5 kDa, 70.44% RG-I, Rha/(Gal + Ara) = 20) and its oligosaccharide with less branched RG-I [DWRP, 12.1 kDa, 50.29% RG-I, Rha/(Gal + Ara) = 6] are potential prebiotics. The present study is conducted to uncover the impact of the content, molecular size, and branch degrees of RG-I on the inhibiting effect of high-fat diet (HFD)-induced obesity. The commercial pectin (CP, 496.2 kDa, 35.77% RG-I, Rha/(Gal + Ara) = 6), WRP, and DWRP were orally administered to HFD-fed C57BL/6J mice (100 mg kg-1 d-1) to determine their individual effects on obesity. WRP significantly prevented bodyweight gain, insulin resistance, and inflammatory responses in HFD-fed mice. No obvious anti-obesity effect was observed in either CP or DWRP supplementation. A mechanistic study revealed that CP and DWRP could not enhance the diversity of gut microbiota, while WRP treatment positively modulated the gut microbiota of obese mice by increasing the abundance of Butyrivibrio, Roseburia, Barnesiella, Flavonifractor, Acetivibrio, and Clostridium cluster IV. Furthermore, WRP significantly promoted browning of white adipose tissues in HFD-fed mice, while CP and DWRP did not. WRP can attenuate the HFD-induced obesity by modulation of gut microbiota and lipid metabolism. Highly branched RG-I domain enrichment is essential for pectin mitigating against the HFD-induced obesity.


Assuntos
Obesidade/dietoterapia , Pectinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/microbiologia , Pectinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA