Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; : 1-11, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246564

RESUMO

Se deficiency causes impaired growth of fish skeletal muscle due to the retarded hypertrophy of muscle fibres. However, the inner mechanisms remain unclear. According to our previous researches, we infer this phenomenon is associated with Se deficiency-induced high concentration of reactive oxygen species (ROS), which could suppress the target of rapamycin complex 1 (TORC1) pathway-mediated protein synthesis by inhibiting protein kinase B (Akt), an upstream protein of TORC1. To test this hypothesis, juvenile zebrafish (45 d post-fertilisation) were fed a basal Se-adequate diet or a basal Se-deficient diet or them supplemented with an antioxidant (DL-α-tocopherol acetate, designed as VE) or a TOR activator (MHY1485) for 30 d. Zebrafish fed Se-deficient diets exhibited a clear Se-deficient status in skeletal muscle, which was not influenced by dietary VE and MHY1485. Se deficiency significantly elevated ROS concentrations, inhibited Akt activity and TORC1 pathway, suppressed protein synthesis in skeletal muscle, and impaired hypertrophy of skeletal muscle fibres. However, these negative effects of Se deficiency were partly (except that on ROS concentration) alleviated by dietary MHY1485 and completely alleviated by dietary VE. These data strongly support our speculation that Se deficiency-induced high concentration of ROS exerts a clear inhibiting effect on TORC1 pathway-mediated protein synthesis by regulating Akt activity, thereby restricting the hypertrophy of skeletal muscle fibres in fish. Our findings provide a mechanistic explanation for Se deficiency-caused retardation of fish skeletal muscle growth, contributing to a better understanding of the nutritional necessity and regulatory mechanisms of Se in fish muscle physiology.

2.
Front Microbiol ; 13: 926724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246248

RESUMO

Pueraria lobata (Willd) (Pueraria montana var. lobata (Willd.) Maesen & S. M. Almeida ex Sanjappa & Predeep) is an important herbal medicine used in many countries. In P. lobata plants showing symptoms of mosaic, yellow spots, and mottling, mixed infection of new viruses provisionally named Pueraria lobata-associated emaravirus (PloAEV, genus Emaravirus), Pueraria lobata-associated crinivirus (PloACV, genus Crinivirus), and isolate CQ of the previously reported kudzu mosaic virus (KuMV-CQ, genus Begomovirus) was confirmed through high-throughput sequencing. PloAEV has five RNA segments, encoding a putative RNA-dependent RNA polymerase, glycoprotein precursor, nucleocapsid protein, movement protein, and P5, respectively. PloACV has two RNA segments, encoding 11 putative proteins. Only PloAEV could be mechanically transmitted from mixed infected symptomatic kudzu to Nicotiana benthamiana plants. All three viruses were detected in 35 symptomatic samples collected from five different growing areas, whereas no viruses were detected in 21 non-symptomatic plants, suggesting a high association between these three viruses. Thus, this study provides new knowledge on the diversity and molecular characteristics of viruses in P. lobata plants affected by the viral disease.

3.
J Nutr ; 151(7): 1791-1801, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33982120

RESUMO

BACKGROUND: Selenium (Se) status is closely related to skeletal muscle physiological status. However, its influence on skeletal muscle growth has not been well studied. OBJECTIVES: This study aimed to analyze the impacts of overall Se status (deficient, adequate, and high) on skeletal muscle growth using a growing zebrafish model. METHODS: Zebrafish (1.5-mo-old) were fed graded levels of Se (deficient: 0.10 mg Se/kg; marginally deficient: 0.22 mg Se/kg; adequate: 0.34 mg Se/kg; high: 0.44, 0.57, and 0.69 mg Se/kg) as Se-enriched yeast for 30 d. Zebrafish growth, and Se accumulation, selenoenzyme activity, selenotranscriptome profiles, and oxidative status in the whole body, and selenotranscriptome profiles, histological characteristics, biochemicals, and gene and protein expression profiles related to muscle growth in the skeletal muscle were analyzed by model fitting and/or 1-factor ANOVA. RESULTS: Se status biomarkers within the whole body and skeletal muscle indicated that 0.34 mg Se/kg was adequate for growing zebrafish. For biomarkers related to skeletal muscle growth, compared with 0.34 mg Se/kg, 0.10 mg Se/kg decreased the white muscle cross-sectional area (WMCSA) and the mean diameter of white muscle fibers (MDWMF) by 14.4%-15.1%, inhibited protein kinase B-target of rapamycin complex 1 signaling by 63.7%-68.5%, and stimulated the autophagy-lysosome pathway by 1.07 times and the ubiquitin-proteasome pathway (UPP) by 96.0% (P < 0.05), whereas 0.22 mg Se/kg only decreased the WMCSA by 7.8% (P < 0.05); furthermore, 0.44 mg Se/kg had no clear effects on skeletal muscle biomarkers, whereas 0.57-0.69 mg Se/kg decreased the WMCSA and MDWMF by 6.3%-25.9% and 5.1%-21.3%, respectively, and stimulated the UPP by 2.23 times (P < 0.05). CONCLUSIONS: A level of 0.34 mg Se/kg is adequate for the growth of zebrafish skeletal muscle, whereas ≤0.10 and ≥0.57 mg Se/kg are too low or too high, respectively, for maintaining efficient protein accretion and normal hypertrophic growth.


Assuntos
Selênio , Animais , Antioxidantes/metabolismo , Músculo Esquelético/metabolismo , Proteólise , Selênio/metabolismo , Peixe-Zebra/metabolismo
4.
Plant Dis ; 104(11): 3010-3018, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32881645

RESUMO

Paper mulberry (Broussonetia papyrifera) is a perennial woody plant used as source material for Cai Lun paper making, in traditional Chinese medicine, and as livestock feed. To identify the presence of viruses in paper mulberry plants affected by a disease with leaf curl symptoms, high-throughput sequencing of total RNA was performed. Analysis of transcriptome libraries allowed the reconstruction of two geminivirus-like genomes. Rolling-circle amplification and PCR with back-to-back primers confirmed the presence of two geminiviruses with monopartite genomes in these plants, with the names paper mulberry leaf curl virus 1 and 2 (PMLCV-1 and PMLCV-2) proposed. The genomes of PMLCV-1 (3,056 nt) and PMLCV-2 (3,757 to 3,763 nt) encode six proteins, with the V4 protein of PMLCV-1 and the V3 proteins of both viruses having low similarities to any known protein in databases. Alternative splicing of an intron, akin to that of mastre-, becurto-, capula-, and grabloviruses, was identified by small RNA (sRNA)-seq and RNA-seq reads mapping to PMLCV-1 and PMLCV-2 antisense transcripts. Phylogenetic analyses and pairwise comparisons showed that PMLCV-1 and PMLCV-2 are most closely related to, but distinct from, two unassigned geminiviruses, citrus chlorotic dwarf associated virus and mulberry mosaic dwarf associated virus, suggesting that they are two new members of the family Geminiviridae. Field investigation confirmed the close association of the two viruses with leaf curl symptoms in paper mulberry plants and that coinfection can aggravate the symptoms.


Assuntos
Broussonetia , Geminiviridae , Morus , Geminiviridae/genética , Filogenia , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA