Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 223: 119033, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058096

RESUMO

External stimulus such as light irradiation is able to deteriorate intracellular redox homeostasis and induce photooxidative damage to non-photogenic bacteria. Exploiting effective strategies to help bacteria resisting infaust stress is meaningful for achieving a stable operation of biological treatment system. In this work, selenium-doped carbon quantum dots (Se-CQDs) were blended into anaerobic ammonia oxidation (anammox) bacteria and an inorganic nanoparticle-microbe hybrid was successfully fabricated to evaluate its nitrogen removal performance under solar-simulated irradiation. It was found that the specific anammox activity decreased by 29.7 ± 5.2% and reactive oxygen species (ROS) content increased by 134.8 ± 4.1% under 50,000 lux light. Sludge activity could be completely recovered under the optimum dosage of 0.42 mL·(g volatile suspended solid) -1 Se-CQDs. Hydroxyl radical (·OH) and superoxide anion radical (·O2-) were identified as the leading ROS inducing lipid peroxidation and antioxidase function detriment. Also, the structure of ladderane lipids located on anammoxosome was destroyed by ROS and functional genes abundances declined accordingly. Although cell surface coated Se-CQDs could absorb ultraviolet light and partially mitigated the photoinhibition, the direct scavenging of ROS by intracellular Se-CQDs primarily contributed to the cellular redox homeostasis, antioxidase activity recovery and sludge activity improvement. The findings of this work provide in-depth understanding the metabolic response mechanism of anammox consortia to light irradiation and might be valuable for a more stable and sustainable nitrogen removal technology, i.e., algal-bacterial symbiotic system, development.


Assuntos
Pontos Quânticos , Selênio , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Carbono/metabolismo , Radical Hidroxila/metabolismo , Lipídeos , Nitrogênio/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Selênio/metabolismo , Esgotos/microbiologia , Superóxidos
2.
Bioresour Technol ; 346: 126658, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974097

RESUMO

Enhanced biological phosphorus removal (EBPR) process is susceptible to the changed operation condition, which results in an unstable treatment performance. In this work, long-term effect of coagulants addition, aluminum salt for the reactor R1 and iron salt for the reactor R2, on EBPR systems was comprehensively evaluated. Results showed that during the initial 30 days' coagulant addition, effluent chemical oxygen demand and phosphorus can be reduced below 25 and 0.5 mg·L-1, respectively. Further supply of metal salts would stimulate microbial extracellular polymeric substance excretion and induce reactive oxygen species accumulation, which destroyed the cell membrane integrity and deteriorated the phosphorus removal performance. Moreover, coagulants would decrease the relative abundance of Candidatus Accumulibacter while increase the relative abundance of Candidatus Competibacter, leading phosphors accumulating organisms in a disadvantage position. The results of this work might be valuable for the operation of chemical assisted biological phosphorus removal bioreactor.


Assuntos
Betaproteobacteria , Fósforo , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Glicogênio , Polifosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA