Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chin J Integr Med ; 30(10): 917-926, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38532152

RESUMO

OBJECTIVE: To explore the protective effect and the underlying mechanism of silibinin (SIB), one of the active compounds from Silybum marianum (L.) Gaertn in endotoxemia. METHODS: Mouse peritoneal macrophage were isolated via intraperitoneally injection of BALB/c mice with thioglycolate medium. Cell viability was assessed using the cell counting kit-8, while cytotoxicity was determined through lactate dehydrogenase cytotoxicity assay. The protein expressions of interleukin (IL)-1 α, IL-1 ß, and IL-18 were determined by enzyme-linked immunosorbent assay. Intracellular lipopolysaccharide (LPS) levels were measured by employing both the limulus amoebocyte lysate assay and flow cytometry. Additionally, proximity ligation assay was employed for the LPS and caspase-11 interaction. Mice were divided into 4 groups: the control, LPS, high-dose-SIB (100 mg/kg), and low-dose-SIB (100 mg/kg) groups (n=8). Zebrafish were divided into 4 groups: the control, LPS, high-dose-SIB (200 εmol/L), and low-dose-SIB (100 εmol/L) groups (n=30 for survival experiment and n=10 for gene expression analysis). The expression of caspase-11, gasdermin D (GSDMD), and N-GSDMD was determined by Western blot and the expressions of caspy2, gsdmeb, and IL-1 ß were detected using quantitative real-time PCR. Histopathological observation was performed through hematoxylineosin staining, and protein levels in bronchoalveolar lavage fluid were quantified using the bicinchoninicacid protein assay. RESULTS: SIB noticeably decreased caspase-11 and GSDMD-mediated pyroptosis and suppressed the secretion of IL-1 α, IL-1 ß, and IL-18 induced by LPS (P<0.05). Moreover, SIB inhibited the translocation of LPS into the cytoplasm and the binding of caspase-11 and intracellular LPS (P<0.05). SIB also attenuated the expression of caspase-11 and N-terminal fragments of GSDMD, inhibited the relative cytokines, prolonged the survival time, and up-regulated the survival rate in the endotoxemia models (P<0.05). CONCLUSIONS: SIB can inhibit pyroptosis in the LPS-mediated endotoxemia model, at least in part, by inhibiting the caspase-11-mediated cleavage of GSDMD. Additionally, SIB inhibits the interaction of LPS and caspase-11 and inhibits the LPS-mediated up-regulation of caspase-11 expression, which relieves caspase-11-dependent cell pyroptosis and consequently attenuates LPS-mediated lethality.


Assuntos
Endotoxemia , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , Piroptose , Silibina , Piroptose/efeitos dos fármacos , Endotoxemia/tratamento farmacológico , Endotoxemia/induzido quimicamente , Animais , Silibina/farmacologia , Caspases Iniciadoras/metabolismo , Peixe-Zebra , Camundongos , Masculino , Substâncias Protetoras/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo
2.
Exp Neurol ; 373: 114642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056584

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characteristized by the presence of dyskinesia and the progressive loss of dopaminergic neurons. Although certain drugs can mitigate the symptoms of PD, they are unable to delay the disease progression, and their prolonged use may result in complications. Therefore, there exists an urgent necessity to identify potential agents that can effectively delay PD progression with fewer side effects. Recent research has unveiled that several traditional Chinese medicines (TCM) exhibit neuroprotective properties in various models pertinent to PD. Forsythoside A (FSA), the primary bioactive compound derived from TCM Lianqiao, has undergone extensive research in animal models of Alzheimer's disease and cerebral ischemia. However, the investigation into the impact of FSA on PD is limited in existing research. In this study, we aimed to evaluate the neuroprotective effects of FSA on MPTP-induced PD mouse model. FSA demonstrated significant improvements in the behavioral and neuropathological changes triggered by MPTP in mice. Furthermore, it exerted a suppressive effect on the activations of astrocyte and microglia. Meanwhile, Tandem mass tag (TMT)-based quantitative proteomics of striatal tissue and bioinformatics analysis were performed to elucidate the underlying mechanisms of FSA on PD mouse model. Proteomics demonstrated a total of 68 differentially expressed proteins (DEPs) were identified between HFSA and MPTP groups including 26 upregulated and 42 downregulated. Systematic bioinformatics analysis of the 68 DEPs illustrated that they were predominantly related to estrogen signaling pathway and calcium signaling pathway. The related DEPs (PLCß4, Grm2, HPAC and Cox4i1) expression levels were verified by Western blot. FSA effectively restored the altered expression of the four DEPs induced by MPTP. Summarily, FSA exerted remarkable neuroprotective effects in MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of FSA as a potential treatment for PD.


Assuntos
Medicamentos de Ervas Chinesas , Forsythia , Glicosídeos , Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Proteômica , Neurônios Dopaminérgicos/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
3.
Chin J Integr Med ; 29(12): 1111-1120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37610554

RESUMO

OBJECTIVE: To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms. METHODS: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo. RESULTS: The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01). CONCLUSION: Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Peixe-Zebra , Inibidor de NF-kappaB alfa/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição STAT3/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
4.
Phytomedicine ; 119: 154977, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506573

RESUMO

BACKGROUND: Dengue virus (DENV) is a major public health threat. However, there are no specific therapeutic drugs for DENV. Many Chinese heat-cleaning formulas, such as Liang-Ge-San (LGS), have been frequently used in the virus-induced diseases. The antiviral effect of LGS has not been reported yet. PURPOSE: In this study, the effect of LGS on the inhibition of dengue virus serotype 2 (DENV-2) was investigated and the relevant mechanism was explored. METHODS: High-performance liquid chromatography was applied to analyze the chemical characterization of LGS. The in vitro antiviral activities of LGS against DENV-2 were evaluated by time-of-drug-addition assay. The binding of heat shock protein 70 (Hsp70) and envelope (E) protein or caveolin1 (Cav1) were analyzed by immunofluorescence and immunoprecipitation assays. Then the role of Cav1 in the anti-DENV-2 effects of LGS was further examined. DENV-2 infected Institute of Cancer Research suckling mice (n = 10) and AG129 mice (n = 8) were used to examine the protective effects of LGS. RESULTS: It was found that geniposide, liquiritin, forsythenside A, forsythin, baicalin, baicalein, rhein, and emodin maybe the characteristic components of LGS. LGS inhibited the early stage of DENV-2 infection, decreased the expression levels of viral E and non-structural protein 1 (NS1) proteins. LGS also reduced E protein and Hsp70 binding and attenuated the translocation of Hsp70 from cytoplasm to the cell membrane. Moreover, LGS decreased the binding of Hsp70 to Cav1. Further study showed that the overexpression of Cav1 reversed LGS-mediated E protein and Hsp70 inhibition in the plasma membrane. In the in vivo study, LGS was highly effective in prolonging the survival time, reducing viral loads. CONCLUSION: This work demonstrates for the first time that LGS exerts anti-DENV-2 activity in vitro and in vivo. LGS decreases DENV-2-stimulated cytoplasmic Hsp70 translocation into the plasma membrane by Cav1 inhibition, thereby inhibiting the early stage of virus infection. These findings indicate that LGS may be a candidate for the treatment of DENV.


Assuntos
Vírus da Dengue , Dengue , Animais , Camundongos , Dengue/tratamento farmacológico , Proteínas de Choque Térmico HSP70 , Sorogrupo , Membrana Celular , Antivirais/farmacologia , Antivirais/uso terapêutico , Citoplasma/metabolismo
5.
Front Pharmacol ; 14: 1181319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456759

RESUMO

Sepsis is a serious life-threatening health disorder with high morbidity and mortality rates that burden the world, but there is still a lack of more effective and reliable drug treatment. Liang-Ge-San (LGS) has been shown to have anti-inflammatory effects and is a promising candidate for the treatment of sepsis. However, the anti-sepsis mechanism of LGS has still not been elucidated. In this study, a set of genes related to inflammatory chemotaxis pathways was downloaded from Encyclopedia of Genes and Genomes (KEGG) and integrated with sepsis patient information from the Gene Expression Omnibus (GEO) database to perform differential gene expression analysis. Glycogen synthase kinase-3ß (GSK-3ß) was found to be the feature gene after these important genes were examined using the three algorithms Random Forest, support vector machine recursive feature elimination (SVM-REF), and least absolute shrinkage and selection operator (LASSO), and then intersected with possible treatment targets of LGS found through the search. Upon evaluation, the receiver operating characteristic (ROC) curve of GSK-3ß indicated an important role in the pathogenesis of sepsis. Immune cell infiltration analysis suggested that GSK-3ß expression was associated with a variety of immune cells, including neutrophils and monocytes. Next, lipopolysaccharide (LPS)-induced zebrafish inflammation model and macrophage inflammation model was used to validate the mechanism of LGS. We found that LGS could protect zebrafish against a lethal challenge with LPS by down-regulating GSK-3ß mRNA expression in a dose-dependent manner, as indicated by a decreased neutrophils infiltration and reduction of inflammatory damage. The upregulated mRNA expression of GSK-3ß in LPS-induced stimulated RAW 264.7 cells also showed the same tendency of depression by LGS. Critically, LGS could induce M1 macrophage polarization to M2 through promoting GSK-3ß inactivation of phosphorylation. Taken together, we initially showed that anti-septic effects of LGS is related to the inhibition on GSK-3ß, both in vitro and in vivo.

6.
J Ethnopharmacol ; 317: 116743, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37331452

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular disease (CVD) is a serious disease with a high incidence rate and mortality. Inflammation is closely related to the occurrence of CVDs. As an essential medicine of promoting blood circulation and removing blood stasis in China, Salvia miltiorrhiza Bunge (Danshen) is widely used to treat CVDs due to its anti-inflammatory and cardiovascular protective effects. Salvianolic acids are the most abundant component in the water extract of S. miltiorrhiza, which has a significant effect on the treatment of CVDs. However, due to the complex composition of salvianolic acids, the active molecules and their underlying mechanisms have not been fully explored. AIM OF THIS STUDY: The present study aims to isolate and identify salvianolic acids from Danshen with anti-inflammatory activity and explore the potential mechanisms of isolates. METHODS: The structures of isolated salvianolic acids were elucidated by UV, IR, NMR, MS and electronic circular dichroism (ECD) calculations. Then anti-inflammatory activities of isolates were screened out by the zebrafish inflammation models. The most active compound was further used to explore the anti-inflammatory mechanisms on LPS-stimulated RAW 264.7 cells. The key inflammatory cytokines IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of STAT3, p-STAT3 (Tyr705), NF-κB p65, IκBα, p-IκBα (Ser32) and α7nAchR were determined by Western blotting. The nuclear translocation of p-STAT3 (Tyr705) and NF-κB p65 was evaluated by immunofluorescence assays. Finally, the in vivo anti-inflammatory mechanisms were investigated by observation of neutrophil migration, H&E staining, survival analysis and quantitative PCR (Q-PCR) in LPS-microinjected zebrafish. RESULTS: Two new and four known compounds were isolated from Danshen. Among them, isosalvianolic acid A-1 (C1) and ethyl lithospermate (C5) inhibited neutrophil migrations in three zebrafish inflammation models and C1 with the best activities decreased the secretion of IL-6 and TNF-α and inhibited the expression level of p-IκBα (Ser32) in LPS stimulated RAW 264.7 cells. In addition, C1 also reduced the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Moreover, C1 significantly upregulated the protein expression of α7nAchR, and the knockdown of α7nAchR counteracted the effects of C1 on the production of IL-6 and TNF-α and the expression levels of p-STAT3 (Tyr705), NF-κB p65 and p-IκBα (Ser32). In vivo experiments, C1 decreased the migration and infiltration of inflammatory cells, increased the survival ratio and inhibited the mRNA level of IL-6, TNF-α, STAT3, NF-κB and IκBα in LPS-microinjected zebrafish. CONCLUSION: Two new and four known compounds were isolated from Danshen. Among them, C1 exerted anti-inflammatory activities by activating α7nAchR signaling and subsequently inhibiting STAT3 and NF-κB pathways. This study provided evidence for the clinical application of Danshen and contributed to the development of C1 as a novel in the treatment of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Salvia miltiorrhiza , Animais , Camundongos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Peixe-Zebra , Receptor Nicotínico de Acetilcolina alfa7 , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Células RAW 264.7
7.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259408

RESUMO

BACKGROUND: At present, about half of the world's population is at risk of being infected with dengue virus (DENV). However, there are no specific drugs to prevent or treat DENV infection. Glycyrrhizae Radix et Rhizome, a well-known traditional Chinese medicine, performs multiple pharmacological activities, including exerting antiviral effects. The aim of this study was to investigate the anti-DENV effects of n-butanol extract from Glycyrrhizae Radix et Rhizome (GRE). METHODS: Compounds analysis of GRE was conducted via ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The antiviral activities of GRE were determined by the CCK-8 assay, plaque assay, qRT-PCR, Western blotting, and the immunofluorescence assay. The DENV-infected suckling mice model was constructed to explore the antiviral effects of GRE in vivo. RESULTS: Four components in GRE were analyzed by UHPLC-MS/MS, including glycyrrhizic acid, glycyrrhetnic acid, liquiritigenin, and isoliquiritigenin. GRE inhibited the attachment process of the virus replication cycle and reduced the expression of the E protein in cell models. In the in vivo study, GRE significantly relieved clinical symptoms and prolong survival duration. GRE also significantly decreased viremia, reduced the viral load in multiple organs, and inhibited the release of pro-inflammatory cytokines in DENV-infected suckling mice. CONCLUSIONS: GRE exhibited significant inhibitory activities in the adsorption stage of the DENV-2 replication cycle by targeting the envelope protein. Thus, GRE might be a promising candidate for the treatment of DENV infection.

8.
Chin Med ; 18(1): 35, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013552

RESUMO

BACKGROUND: Licorice (Glycyrrhiza uralensis Fisch.), a well-known traditional medicine, is traditionally used for the treatment of respiratory disorders, such as cough, sore throat, asthma and bronchitis. We aim to investigate the effects of liquiritin (LQ), the main bioactive compound in licorice against acute lung injury (ALI) and explore the potential mechanism. METHODS: Lipopolysaccharide (LPS) was used to induce inflammation in RAW264.7 cells and zebrafish. Intratracheal instillation of 3 mg/kg of LPS was used for induction an ALI mice model. The concentrations of IL-6 and TNF-α were tested using the enzyme linked immunosorbent assay. Western blot analysis was used to detect the expression of JNK/Nur77/c-Jun related proteins. Protein levels in bronchoalveolar lavage fluid (BALF) was measured by BCA protein assay. The effect of JNK on Nur77 transcriptional activity was determined by luciferase reporter assay, while electrophoretic mobility shift assay was used to examine the c-Jun DNA binding activity. RESULTS: LQ has significant anti-inflammatory effects in zebrafish and RAW264.7 cells. LQ inhibited the expression levels of p-JNK (Thr183/Tyr185), p-Nur77 (Ser351) and p-c-Jun (Ser63), while elevated the Nur77 expression level. Inhibition of JNK by a specific inhibitor or small interfering RNA enhanced the regulatory effect of LQ on Nur77/c-Jun, while JNK agonist abrogated LQ-mediated effects. Moreover, Nur77-luciferase reporter activity was suppressed after JNK overexpression. The effects of LQ on the expression level of c-Jun and the binding activity of c-Jun with DNA were attenuated after Nur77 siRNA treatment. LQ significantly ameliorated LPS-induced ALI with the reduction of lung water content and BALF protein content, the downregulation of TNF-α and IL-6 levels in lung BALF and the suppression of JNK/Nur77/c-Jun signaling, which can be reversed by a specific JNK agonist. CONCLUSION: Our results indicated that LQ exerts significant protective effects against LPS-induced inflammation both in vivo and in vitro via suppressing the activation of JNK, and consequently inhibiting the Nur77/c-Jun signaling pathway. Our study suggests that LQ may be a potential therapeutic candidate for ALI and inflammatory disorders.

9.
J Ethnopharmacol ; 309: 116339, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36870463

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dengue virus (DENV) infection is a global public health issue without effective therapeutic interventions. Chinese medicine with heat-clearing and detoxifying properties has been frequently used in the treatment of viral infection. Ampelopsis Radix (AR) is a traditional Chinese medicine for clearing heat and detoxification that has been widely used in the prevention and treatment of infectious diseases. However, no studies on the effects of AR against viral infection have been reported, thus far. AIM OF THE STUDY: To explore the anti-DENV activities of the fraction (AR-1) obtained from AR both in vitro and in vivo. MATERIALS AND METHODS: The chemical composition of AR-1 was identified by liquid chromatography-tandem MS (LC‒MS/MS). The antiviral activities of AR-1 were studied in baby hamster kidney fibroblast BHK-21 cells, ICR suckling mice and induction of interferon α/ß (IFN-α/ß) and IFN-γ R-/- (AG129) mice. RESULTS: Based on LC‒MS/MS analysis, 60 compounds (including flavonoids, phenols, anthraquinones, alkaloids and other types) were tentatively characterized from AR-1. AR-1 inhibited the cytopathic effect, the production of progeny virus and the synthesis of viral RNA and proteins by blocking DENV-2 binding to BHK-21 cells. Moreover, AR-1 significantly attenuated weight loss, decreased clinical scores and prolonged the survival of DENV-infected ICR suckling mice. Critically, the viral load in blood, brain and kidney tissues and the pathological changes in brain were remarkably alleviated after AR-1 treatment. Further study on AG129 mice showed that AR-1 obviously improved the clinical manifestations and survival rate, reduced viremia, attenuated gastric distension and relieved the pathological lesions caused by DENV. CONCLUSIONS: In summary, this is the first report that AR-1 exhibits anti-DENV effects both in vitro and in vivo, which suggests that AR-1 may be developed as a therapeutic candidate against DENV infection.


Assuntos
Ampelopsis , Animais , Camundongos , Cromatografia Líquida , Camundongos Endogâmicos ICR , Espectrometria de Massas em Tandem , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
10.
Phytomedicine ; 110: 154650, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36649670

RESUMO

BACKGROUND: Dengue caused by dengue virus (DENV) spreads rapidly around the world. However, there are no worldwide licensed vaccines or specific antivirals to combat DENV infection. Quassinoids are the most characteristic components of Eurycoma longifolia, which have been reported to display a variety of biological activities. However, whether quassinoids exert anti-DENV activities remains unknown. PURPOSE: To test the quassinoids of E. longifolia for their activity against DENV and to clarify the potential mechanisms. METHODS: The quassinoids from E. longifolia were isolated by chromatography techniques, and their chemical structures were elucidated by spectroscopic analysis. The anti-DENV activities of quassinoids on baby hamster kidney cells BHK-21 were determined by lactate dehydrogenase (LDH) assay. The synthesis of progeny virus was measured by plaque assay. The expression levels of envelope protein (E) and non-structural protein 1 (NS1) were evaluated by qRT-PCR, Western blot and immunofluorescence assays. Molecular docking was used to screen the potential targets of the most active quassinoid against DENV-2, and surface plasmon resonance analysis was employed to confirm the direct binding between the most active quassinoid and potential target. RESULTS: Twenty-four quassinoids, including three new quassinoids (1 - 3), were isolated from the ethanol extract of E. longifolia. Quassinoids 4, 5, 9, 11, 12, 15, 16, 17, 19 and 20 significantly reduced the LDH release at the stages of viral binding and entry or intracellular replication. Among them, 19 (6α-hydroxyeurycomalactone, 6α-HEL) exhibited the best anti-DENV-2 activities with an EC50 value of 0.39 ± 0.02 µM. Further experiments suggested that 6α-HEL remarkably inhibited progeny virus synthesis and mRNA and protein expression levels of E and NS1 of DENV-2. Time-of-drug-addition assay suggested that 6α-HEL inhibited intracellular replication of DENV-2 at an early stage. Moreover, 6α-HEL was shown to interact with NS5-RdRp domain at a binding affinity of -8.15 kcal/mol. SPR assay further verified 6α-HEL bound to RdRp protein with an equilibrium dissociation constant of 1.49 × 10-7 M. CONCLUSION: Ten quassinoids from E. longifolia showed anti-DENV activities at processes of virus binding and entry or intracellular replication. The most active quassinoid 6α-HEL exerts the anti-DENV-2 activities at intracellular replication stage by directly targeting the NS5-RdRp protein. These results suggest that 6α-HEL could be a promising candidate for the treatment of DENV-2 infection.


Assuntos
Antivirais , Vírus da Dengue , Eurycoma , Quassinas , Replicação Viral , Animais , Cricetinae , Humanos , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Dengue/tratamento farmacológico , Eurycoma/química , Simulação de Acoplamento Molecular , Quassinas/isolamento & purificação , Quassinas/farmacologia , RNA Polimerase Dependente de RNA , Replicação Viral/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos
11.
Food Funct ; 13(6): 3590-3602, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35262135

RESUMO

Panax notoginseng has been used both as a traditional medicine and as a functional food for hundreds of years in Asia. However, the active constituents from P. notoginseng and their pharmacologic properties still need to be further explored. In this study, one new dammarane-type triterpenoid saponin (1), along with fourteen known analogs (2-15) were isolated and identified from the roots of P. notoginseng. The anti-inflammatory, anti-angiogenetic and anti-dengue virus effects of these isolated compounds were further evaluated. Compounds 1, 3, 5-7 and 10-12 exerted anti-inflammatory effects in two different zebrafish inflammatory models. Among them, 11, with the most significant activities, alleviated the inflammatory response by blocking the MyD88/NF-κB and STAT3 pathways. Moreover, compound 15 showed anti-angiogenetic activities in Tg(fli1:EGFP) and Tg(flk1:GFP) zebrafish, while 3 and 5 only inhibited angiogenesis in Tg(fli1:EGFP) zebrafish. Additionally, compounds 1, 3, 6, 8, 9 and 12 suppressed the replication of dengue virus either at the viral adsorption and entry stages or at the intracellular replication step. In conclusion, these findings enrich knowledge of the diversity of saponins in P. notoginseng and suggest that the dammarane-type triterpenoid saponins from P. notoginseng may be developed as potential functional foods to treat inflammation, angiogenesis or dengue-related diseases.


Assuntos
Panax notoginseng , Panax , Saponinas , Triterpenos , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , Raízes de Plantas/metabolismo , Saponinas/metabolismo , Saponinas/farmacologia , Peixe-Zebra , Damaranos
12.
Planta Med ; 88(1): 43-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33049786

RESUMO

Toad venom (Chansu) is used in the treatment of infectious and inflammatory diseases in China and East/Southeast Asian countries. However, the anti-inflammatory components of toad venom have not yet been systematically evaluated and clearly defined. To investigate the anti-inflammatory effects of toad venom and identify new anti-inflammatory ingredients, we used zebrafish, an alternative drug screening model, to evaluate the anti-inflammatory effects of 14 bufadienolides previously isolated from toad venom. Most of the bufadienolides were found to exert significant anti-inflammatory effects on lipopolysaccharide-, CuSO4-, or tail transection-induced zebrafish inflammatory models. Moreover, gammabufotalin ( 6: ) inhibits lipopolysaccharide-induced inflammation by suppressing the myeloid differentiation primary response 88/nuclear factor-kappa B and STAT3 signal pathways. This study confirms the potential of zebrafish in drug screening, clarifies the anti-inflammatory effects of bufadienolides from toad venom, and indicates that gammabufotalin may be developed as a novel therapeutic agent for inflammatory diseases in the future.


Assuntos
Venenos de Anfíbios , Bufanolídeos , Animais , Anti-Inflamatórios/farmacologia , Bufanolídeos/farmacologia , Lipopolissacarídeos , Peixe-Zebra
14.
J Ethnopharmacol ; 266: 113443, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022344

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chansu, dried secretions from Bufonidae, has long been used for cancer treatment as a traditional Chinese medicine. In searching for effective anti-hepatoma agents from Chansu, our preliminary drug screening found that a bufadienolide, namely 1ß-hydroxyl-arenobufagin (1ß-OH-ABF), displays anti-hepatoma activities. However, the anti-hepatoma effects and molecular mechanisms of 1ß-OH-ABF have not been defined. AIM OF THE STUDY: To evaluate the anti-hepatoma activity of 1ß-OH-ABF against liver cancer Hep3B and HepG2 cells in vitro and in vivo, as well as explore the underlying mechanisms. MATERIALS AND METHODS: The anti-proliferative effects of 1ß-OH-ABF on liver cancer Hep3B, HepG2, HuH7, SK-HEP-1 and normal hepatocyte LO2 cells were examined by MTT assay and colony formation assay. Hoechst 33258 staining and Annexin V-FITC/PI staining assay were used to analyze apoptosis induced by 1ß-OH-ABF. The collapse of the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining assay. Western blotting was used to examine the expression levels of targeted proteins. The role of mTOR in 1ß-OH-ABF-induced apoptosis was investigated using small interfering RNA (siRNA) transfection. Zebrafish xenograft model was established to evaluate the anti-hepatoma effects of 1ß-OH-ABF in vivo. RESULTS: We found that 1ß-OH-ABF inhibits the proliferation of Hep3B, HepG2, HuH7, SK-HEP-1 cells but has little cytotoxicity towards LO2 cells. 1ß-OH-ABF induces mitochondria dysfunction and triggers mitochondria apoptotic pathway, which is accompanied by the loss of ΔΨm, upregulation and translocation of Bax, as well as cleavages of caspase-9, caspase-3 and PARP. Mechanistically, 1ß-OH-ABF markedly decreases the expression level of p-AKT/AKT and p-mTOR (Ser2248 and Ser2481)/mTOR in a time-dependent manner. Inhibition of mTOR by siRNA strengthens 1ß-OH-ABF-mediated apoptosis. Critically, 1ß-OH-ABF shows a marked in vivo anti-hepatoma effect on human Hep3B cell xenografts in zebrafish model. CONCLUSION: 1ß-OH-ABF induces mitochondrial apoptosis through the suppression of mTOR signaling in vitro and in vivo, indicating that 1ß-OH-ABF may serve as a potential agent for the treatment of liver cancer.


Assuntos
Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Bufanolídeos/química , Bufanolídeos/isolamento & purificação , Carcinoma Hepatocelular/patologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Mitocôndrias/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
15.
J Ethnopharmacol ; 267: 113497, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091492

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sheng-Mai Yin (SMY), a famous traditional Chinese medicine formula, has been commonly used in China for centuries to treat various diseases, such as inflammation-related diseases. However, the anti-inflammatory activity of SMY and its potential mechanisms still have not yet been clearly understood. AIM OF THE STUDY: In this study, we aimed to determine the anti-inflammatory effect of SMY and explore its underlying mechanisms both on RAW 264.7 cells and zebrafish. MATERIALS AND METHODS: The levels of pro-inflammatory cytokines IL-6 and TNF-α secreted by RAW 264.7 cells were measured by ELISA. The protein expressions of IκBα, p-IκBα (Ser32), STAT3 and p-STAT3 (Tyr705) were determined by Western blotting. And the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 macrophage cells was detected by confocal microscopy. Moreover, the in vivo anti-inflammatory effect of SMY and its potential mechanisms were further investigated by survival analysis, hematoxylin-eosin staining (H&E), observation of neutrophil migration and quantitative real-time PCR (qRT-PCR) analysis in zebrafish inflammatory models. RESULTS: SMY reduced the release of IL-6 and TNF-α, inhibited the phosphorylation of IκBα and STAT3 as well as the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 cells. Furthermore, the increased survival, decreased infiltration of inflammatory cells and the attenuated migration of neutrophils together suggested the in vivo anti-inflammatory effects of SMY. More importantly, SMY reduced the gene expressions of pro-inflammatory cytokines and suppressed LPS-induced up-regulation of NF-κB, IκBα and STAT3 in zebrafish inflammatory models. CONCLUSION: SMY exerts significant anti-inflammatory effects with a potential mechanism of inhibiting the NF-κB and STAT3 signal pathways. Our findings suggest a scientific rationale of SMY to treat inflammatory diseases in clinic.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Sulfato de Cobre , Citocinas/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células RAW 264.7 , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
J Ethnopharmacol ; 269: 113747, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359185

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liang-Ge-San (LGS), a traditional Chinese medicine (TCM) formula, is usually used in acute inflammatory diseases in China. AIM OF THE STUDY: This study aims to detect the optimal combination of anti-inflammatory components from LGS. MATERIALS AND METHODS: Four mainly representative components (phillyrin, emodin, baicalin, and liquiritin) from LGS were chosen. The optimal combination was investigated by orthogonal design study. Zebrafish inflammation model was established by lipopolysaccharide (LPS)-yolk microinjection, and then the anti-inflammatory activities of different combinations were determined by survival analysis, changes on inflammatory cells infiltration, the MyD88/NF-κB and MAPK pathways and inflammatory cytokines production. RESULTS: The different combinations of bioactive ingredients from LGS significantly protected zebrafish from LPS-induced inflammation, as evidenced by decreased recruitment of macrophages and neutrophils, inhibition of the MyD88/NF-κB and MAPK pathways and down-regulation of TNF-α and IL-6. Among them, the combination group 8 most significantly protected against LPS. The combination of group 8 is: 0.1 µM of emodin, 2 µM of baicalin, 20 µM of phillyrin and 12.5 µM of liquiritin. CONCLUSION: The optimized combination group 8 exerts the most significant anti-inflammatory activity by inhibiting the recruitment of inflammatory cells, activation of the MyD88/NF-κB and MAPK pathways and the secretion of pro-inflammatory cytokines. This present study provides pharmacological evidences for the further development of new modern Chinese drug from LGS to treat acute inflammatory diseases, but indicated the use of zebrafish in the screening of components from formulas.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Emodina/farmacologia , Emodina/uso terapêutico , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Inflamação/induzido quimicamente , Interleucina-6/genética , Larva/citologia , Larva/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Medicina Tradicional Chinesa , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Saco Vitelino/citologia , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/imunologia , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores
17.
Toxicol Appl Pharmacol ; 407: 115252, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987027

RESUMO

Acute lung injury (ALI) is a severe disease for which effective drugs are still lacking at present. Forsythia suspensa is a traditional Chinese medicine commonly used to relieve respiratory symptoms in China, but its functional mechanisms remain unclear. Therefore, forsythoside A (FA), the active constituent of F. suspensa, was studied in the present study. Inflammation models of type II alveolar epithelial MLE-12 cells and BALB/c mice stimulated by lipopolysaccharide (LPS) were established to explore the effects of FA on ALI and the underlying mechanisms. We found that FA inhibited the production of monocyte chemoattractant protein-1 (MCP-1/CCL2) in LPS-stimulated MLE-12 cells in a dose-dependent manner. Moreover, FA decreased the adhesion and migration of monocytes to MLE-12 cells. Furthermore, miR-124 expression was upregulated after FA treatment. The luciferase report assay showed that miR-124 mimic reduced the activity of CCL2 in MLE-12 cells. However, the inhibitory effects of FA on CCL2 expression and monocyte adhesion and migration to MLE-12 cells were counteracted by treatment with a miR-124 inhibitor. Critically, FA ameliorated LPS-induced pathological damage, decreased the serum levels of tumor necrosis factor-α and interleukin-6, and inhibited CCL2 secretion and macrophage infiltration in lungs in ALI mice. Meanwhile, administration of miR-124 inhibitor attenuated the protective effects of FA. The present study suggests that FA attenuates LPS-induced adhesion and migration of monocytes to type II alveolar epithelial cells though upregulating miR-124, thereby inhibiting the expression of CCL2. These findings indicate that the potential application of FA is promising and that miR-124 mimics could also be used in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glicosídeos/farmacologia , MicroRNAs/biossíntese , Monócitos/efeitos dos fármacos , Alvéolos Pulmonares/citologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/biossíntese , Relação Dose-Resposta a Droga , Glicosídeos/uso terapêutico , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Alvéolos Pulmonares/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Clin Sci (Lond) ; 134(19): 2549-2563, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32975280

RESUMO

Acute lung injury (ALI) is a life-threatening disease without effective pharmacotherapies, so far. Forsythia suspensa is frequently used in the treatment of lung infection in traditional Chinese medicine. In search for natural anti-inflammatory components, the activity and the underlying mechanism of Forsythoside A (FA) from Forsythia suspensa were explored. In the present paper, BALB/c mice and murine RAW 264.7 cells were stimulated by LPS to establish inflammation models. Data showed that FA inhibited the production of TNF-α and IL-6 and the activation of STAT3 in LPS-stimulated RAW 264.7 cells. Additionally, FA increased the expression level of microRNA-124 (miR-124). Furthermore, the inhibitory effect of FA on STAT3 was counteracted by the treatment of miR-124 inhibitor. Critically, FA ameliorated LPS-induced ALI pathological damage, the increase in lung water content and inflammatory cytokine, cells infiltration and activation of the STAT3 signaling pathway in BALB/c mice. Meanwhile, FA up-regulated the expression of miR-124 in lungs, while administration with miR-124 inhibitor attenuated the protective effects of FA. Our results indicated that FA alleviates LPS-induced inflammation through up-regulating miR-124 in vitro and in vivo. These findings indicate the potential of FA and miR-124 in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Glicosídeos/farmacologia , MicroRNAs/genética , Substâncias Protetoras/farmacologia , Regulação para Cima/genética , Animais , Glicosídeos/química , Inflamação/genética , Inflamação/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/metabolismo , Modelos Biológicos , Substâncias Protetoras/química , Células RAW 264.7 , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
J Pharm Biomed Anal ; 189: 113411, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603924

RESUMO

ShengMai Formula (SMF), a famous traditional Chinese medicine (TCM) formula, has been extensively used for treating the diseases caused by Qi-Yin deficiency for almost 1000 years. However, few studies are elucidated about its batch-to-batch quality control system and the quality control markers remain largely unrevealed, which have hindered the development and utilization of SMF. In this study, we aimed to screen the optimal quality control markers to evaluate the overall quality consistency of SMF. High-performance liquid chromatography (HPLC) fingerprint coupled with similarity analysis (SA), principal components analysis (PCA) and hierarchical cluster analysis (HCA) was firstly established to hunt for the discriminant components that resulting in the chemical inconsistence among different batches of SMF. Subsequently, different batches of samples were selected to explore their immunomodulatory activities by neutral red method, Cell Counting Kit-8 (CCK-8) assay and enzyme-linked immunosorbent assay (ELISA). Finally, the fingerprint-efficacy relationships were further illuminated to discover the major bioactive compositions using grey relational analysis (GRA), partial least squares regression (PLSR) analysis and artificial neural network (ANN) analysis. As a result, schisandrol A, schisandrol B, methylophiopogonanone A, schisandrin B, ginsenoside Rf, ginsenoside Rb1, ginsenoside Rg2 and ginsenoside Rb2 were selected as the quality control markers and thus their simultaneous quantification was performed to both evaluate the batch-to-batch chemical and bioactive consistency among different batches of SMF. Our investigation not only stresses the necessity of consistency in efficacy besides chemical consistency, but also provides a comprehensive and powerful quality assessment approach, which is promising to monitor the overall quality consistency of SMF.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão , Combinação de Medicamentos , Medicina Tradicional Chinesa , Controle de Qualidade
20.
J Ethnopharmacol ; 263: 113145, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32730890

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qingwen Baidu Decoction (QBD), a famous traditional Chinese medicine prescription with heat-clearing and detoxifying efficacies, is widely used in the treatment of inflammatory diseases. However, due to lack of holistic quality evaluation research, the further study on the detailed molecular mechanisms of action are still insufficient. AIM OF THE STUDY: This study aimed to evaluate the overall quality of QBD and to explore the anti-inflammatory effects and associated intracellular signaling pathways. MATERIALS AND METHODS: a comprehensive method of chemical fingerprint analysis and simultaneous multi-component quantification was firstly developed by high performance liquid chromatography with diode array detector (HPLC-DAD). Similarity analysis, principal component analysis and hierarchical cluster analysis with heatmap were also applied to screen out the markers components in QBD samples. Moreover, its anti-inflammatory effects and mechanisms were further investigated by survival analysis, hematoxylin-eosin staining (H&E), neutrophil observation, quantitative real-time PCR analysis (qRT-PCR), Western blotting and confocal microscopy. RESULTS: Twenty-one characteristic peaks from 11 herbs were chemically identified in the chromatographic fingerprint. Fifteen quantitative markers from 11 herbs, such as baicalin, wogonoside, geniposidic acid, oxypaeoniflora and so on, were screened out with the aid of chemometrics to further quantitatively assess the quality of QBD. The results of survival analysis, H&E and neutrophil observation in zebrafish inflammatory models consistently showed that QBD exerts potent anti-inflammatory effects in a dose-dependent manner. Additionally, QBD inhibited the activation of NF-κB and STAT3 signal pathways in LPS-induced zebrafish and RAW 264.7 macrophage cells. CONCLUSION: Collectively, our investigations firstly described the chemical profile of QBD and its possible mechanism of anti-inflammation, which provides a preferred strategy for monitoring the overall quality of QBD and supports its clinical application in treating inflammation-related diseases.


Assuntos
Anti-Inflamatórios/análise , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/uso terapêutico , Saúde Holística , Animais , Animais Geneticamente Modificados , Cromatografia Líquida de Alta Pressão/normas , Avaliação Pré-Clínica de Medicamentos/métodos , Saúde Holística/etnologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Células RAW 264.7 , Reprodutibilidade dos Testes , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA