Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(5): 1273-1287, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31994745

RESUMO

Heat stress impairs both pollen germination and pollen tube elongation, resulting in pollination failure caused by energy imbalance. Invertase plays a critical role in the maintenance of energy homoeostasis; however, few studies investigated this during heat stress. Two rice cultivars with different heat tolerance, namely, TLY83 (heat tolerant) and LLY722 (heat susceptible), were subjected to heat stress. At anthesis, heat stress significantly decreased spikelet fertility, accompanied by notable reductions in pollen germination on stigma and pollen tube elongation in ovule, especially in LLY722. Acid invertase (INV), rather than sucrose synthase, contributed to sucrose metabolism, which explains the different tolerances of both cultivars. Under heat stress, larger enhancements in NAD(H), ATP, and antioxidant capacity were found in TLY83 compared with LLY722, whereas a sharp reduction in poly(ADP-ribose) polymerase (PARP) activity was found in the former compared with the latter. Importantly, exogenous INV, 3-aminobenzamide (a PARP inhibitor), sucrose, glucose, and fructose significantly increased spikelet fertility under heat stress, where INV activity was enhanced and PARP activity was inhibited. Therefore, INV can balance the energy production and consumption to provide sufficient energy for pollen germination and pollen tube growth under heat stress.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/fisiologia , beta-Frutofuranosidase/fisiologia , Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Metabolismo Energético , Flores/crescimento & desenvolvimento , Flores/fisiologia , Glucosiltransferases/metabolismo , Resposta ao Choque Térmico , Homeostase , Peróxido de Hidrogênio/metabolismo , NAD/metabolismo , NADP/metabolismo , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Pólen/fisiologia , beta-Frutofuranosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA